(ADVANCED) DATABASE SYSTEMS
(DATABASE MANAGEMENTS)

PROF. DR. HASAN HUSEYIN BALIK
(5™ WEEK)

3. OUTLINE

3. Database Design

3.1 Logical Database Design and the
Relational Model

3.2 Physical Database Design and

Performance

3.2 PHYSICAL DATABASE DESIGN AND
PERFORMANCE

OBJECTIVES

Define terms

Describe the physical database design process
Choose storage formats for attributes

Select appropriate file organizations

Describe three types of file organization
Describe indexes and their appropriate use

Translate a database model into efficient
structures

Know when and how to use denormalization

PHYSICAL DATABASE DESIGN

Purpose-translate the logical description
of data into the technical specifications
for storing and retrieving data

Goal-create a design for storing data that
will provide adequate performance and
ensure database integrity, security, and
recoverability

PHYSICAL DESIGN PROCESS

Inputs

eNormalized relations
e\/olume estimates
e Attribute definitions

eResponse time
expectations

eData security needs
eBackup/recovery needs
e Integrity expectations

eDBMS technology used

Decisions

e Attribute data types

ePhysical record descriptions
(doesn’t always match
logical design)

eFile organizations

eIndexes and database
architectures

eQuery optimization

PHYSICAL DESIGN FOR
REGULATORY COMPLIANCE

Sarbanes- Oxley Act (SOX) - protect investors by
Improving accuracy and reliability

Committee of Sponsoring Organizations (COSO)

of the Treadway Commission
IT Infrastructure Library (ITIL)

Control Objectives for Information and Related
Technology (COBIT)

Regulations and standards that impact physical design decisions

Composite usage map

(Pine Valley Furniture Company)

20,000 -

[

MANUFACTURED
PART

1,200

6,000 7

e... ¥
PURCHASED
PART

|

SUPPLER

[SUPPLIES
|

-

» 4,000

5,000
.

Composite usage map
(Pine Valley Furniture Company) (cont.)

20,000

¥

PART

3,000

iy

40% A\ ° L _70%

Data volumes

/// ._\\\\\\ 6.000 /
14,000 - N\ ¥

MANUFACTURED
PART

1,200

PURCWASED
PA

k.

SUPPLIER

-

SUPPLIES

6,000

Composite usage map
(Pine Valley Furniture Company) (cont.)

20,000

[

MANUFACTURED
PART

1,200

Access Frequencies
(per hour)

6,000 -

'Y ¥

PURCHASED
PART

|

SUPPLER

SUPPLIES

5,000
.

Composite usage map

(Pine Valley Furniture Company) (cont.)

200007 Usage analysis:
> 14,000 purchased parts

accessed per hour =»

8000 supplies accessed from
these 14,000 purchased part

MANUFACTURED
PART

1,200

accesses =»

7000 suppliers accessed from
these 8000 supplies accesses

6,000 7

e... ¥
PURCHASED
PART

|

SUPPLER

[SUPPLIES
|

,' 4,000

Composite usage map
(Pine Valley Furniture Company) (cont.)

o0 /. USAQe analysis:

7500 suppliers accessed per
- hour = -

_ SUPPLIER
4000 supplies accessed from
these 7500 supplier accesses
>

4000 purchased parts
accessed from these 4000
supplies accesses

6,000 7

14,000

e... ¥
MANUFACTURED PURCHASED SUPPLIES
PART PART ,

a

1,200 5,000
.

DESIGNING FIELDS

Field: smallest unit of application data
recognized by system software

Field design

Choosing data type
Coding, compression, encryption
Controlling data integrity

CHOOSING DATA TYPES

TABLE 5-1 Commonly Used Data Types in Oracle 12c

Data Type Description

VARCHARZ Variable-length character data with a maximum length of 4,000 characters;
you must enter a maximum field length (e.g., VARCHARZ2(30) specifies a field
with a maximum length of 30 characters). A string that is shorter than the
maximum will consume only the required space. A corresponding data type
for Unicode character data allowing for the use of a rich variety of national
character sets is NVARCHARZ.

Fixed-length character data with a maximum length of 2,000 characters; default
length is 1 character (e.q., CHAR(5) specifies a field with a fixed length of

5 characters, capable of holding a value from 0 to 5 characters long). There is
also a data type called NCHAR, which allows the use of Unicode character data.

CLOB Character large object, capable of storing up to 4 gigabytes of one variable-length
character data field (e.g., to hold a medical instruction or a customer comment).

NUMEER Positive or negative number in the range 107" to 10"%%; can specify the
precision (total number of digits to the left and right of the decimal point
to a maximum of 38) and the scale (the number of digits to the right of the
decimal point). For example, NUMBER(5) specifies an integer field with a
maximum of 5 digits, and NUMBER(5, 2) specifies a field with no more than
5 digits and exactly 2 digits to the right of the decimal point.

Any date from January 1, 4712 e.c., to December 31, 9999 A p.; DATE stores
the century, year, month, day, hour, minute, and second.

EBinary large object, capable of storing up to 4 gigabytes of binary data
(e.qg., a photograph or sound clip).

Example of a code look-up table
(Pine Valley Furniture Company)

PRODUCT Table

ProductNo

Description

ProductFinish

PRODUCT FINISH Lookup Table

Code

Chair

Desk

Table

Bookcase

G\

Value

— A

/
<

C

f—T
/

/

B

C

Birch

Maple

Oak

Code saves space, but costs
an additional lookup to
obtain actual value

FIELD DATA INTEGRITY

Default value-assumed value if no explicit
value

Range control-allowable value limitations
(constraints or validation rules)

Null value control-allowing or prohibiting
empty fields

Referential integrity-range control (and
null value allowances) for foreign-key to
primary-key match-ups

Sarbanes-Oxley Act (SOX) legislates importance of financial data integrity

HANDLING MISSING DATA

Substitute an estimate of the missing
value (e.g., using a formula)

Construct a report listing missing values

In programs, ignore missing data unless
the value is significant (sensitivity
testing)

Triggers can be used to perform these operations.

DENORMALIZATION

Transforming normalized relations into non-normalized
physical record specifications

Benefits:

Can improve performance (speed) by reducing number of table
lookups (i.e. reduce number of necessary join queries)

Costs (due to data duplication)

Wasted storage space
Data integrity/consistency threats

Common denormalization opportunities
One-to-one relationship (Fig. 5-3)

Many-to-many relationship with non-key attributes (associative entity)
(Fig. 5-4)

Reference data (1:N relationship where 1-side has data not used in
any other relationship) (Fig. 5-5)

A possible denormalization situation: two entities with one-to-one
relationship

STUDENT

Student ID
Campus Address

Submits

APPLICATION
Application ID

Normalized relations:

STUDENT

StudentlD CampusAddress

A

APPLICATION

Application Date
Qualifications

ApplicationlD

ApplicationDate Qualifications

StudentlD

Denormalized relation:

STUDENT

StudentID CampusAddress

ApplicationDate Qualifications

and ApplicationDate and Qualifications may be null

A possible denormalization situation: a many-to-many relationship with
nonkey attributes

I ™y
VENDOR PRICE QUOTE TEM

Vendor ID e M Item ID
Address - Price Description
Contact Name

Normalized relations:

VENDOR ITEM

VendorlD Address ContactName ltemlID

A A
PRICE QUOTE _ Extra table

VendorlD ltemID access
required

Denormalized relations:

VENDOR ITEM QUOTE

VendorlD Address ContactName VendorlD ltemID Description Price
h

Duplicate description possible

A possible
denormalization

situation: STORAGE ITEM

INSTRUCTIONS

reference data instr ID ControlFor 1 iem 1D

Where Store Description
Container Type

Normalized relations:

STORAGE

InstriD

-

TEM Extra table

- dCCeSS
ltemID Description InstriD required

Denormalized relation:

Data duplication

ITEM

ltemID Description WhereStore ContainerType

DENORMALIZE WITH CAUTION

Denormalization can
ncrease chance of errors and inconsistencies
Reintroduce anomalies

Force reprogramming when business rules
change

Perhaps other methods could be used to
Improve performance of joins

Organization of tables in the database (file
organization and clustering)

Proper query design and optimization

PARTITIONING

Horizontal Partitioning: Distributing the rows of a
logical relation into several separate tables

Useful for situations where different users need access to
different rows

Three types: Key Range Partitioning, Hash Partitioning, or
Composite Partitioning

Vertical Partitioning: Distributing the columns of a
logical relation into several separate physical tables

Useful for situations where different users need access to
different columns

The primary key must be repeated in each file
Combinations of Horizontal and Vertical

PARTITIONING PROS AND CONS

Advantages of Partitioning:
Efficiency: Records used together are grouped together

Local optimization: Each partition can be optimized for
performance

Security: data not relevant to users are segregated
Recovery and uptime: smaller files take less time to back up

Load balancing: Partitions stored on different disks, reduces
contention

Disadvantages of Partitioning;:
Inconsistent access speed: Slow retrievals across partitions

Complexity: Non-transparent partitioning

Extra space or update time: Duplicate data; access from
multiple partitions

ORACLE’S HORIZONTAL PARTITIONING

Range partitioning
Partitions defined by range of field values
Could result in unbalanced distribution of rows
Like-valued fields share partitions

Hash partitioning
Partitions defined via hash functions

Will guarantee balanced distribution of rows
Partition could contain widely varying valued fields
List partitioning

Based on predefined lists of values for the partitioning
key

Composite partitioning
Combination of the other approaches

VERTICAL PARTITIONING

Distribution of the columns of a logical relation
Into several separate physical tables.

Example:

One PART table involving accounting, engineering,
and sales attributes.

Split into three, each with the same Product ID, one
for each user group.

This reduces demand on individual relations.

When combinations of data are required, perform
join queries for all needed relations.

DESIGNING PHYSICAL DATABASE FILES

Physical File:

A named portion of secondary memory allocated
for the purpose of storing physical records

Tablespace-named logical storage unit in which
data from multiple tables/views/objects can be

stored

Tablespace components
Segment - a table, index, or partition
Extent-contiguous section of disk space
Data block - smallest unit of storage

DBMS terminology in an Oracle 12c¢ environment

Oracle

Database

[Iilonsists of

Physical Storage

Operating

System File

Oracle

Consists of

Operating
System

Oracle
Data Block

Tablespace

4 'H“\
,x’

.Kd !

flalg-it=ii={Ve g

lCI.‘-onsists lof

Special
Oracle
Tablespace

User
Data
Tablespace

I

N

| d

I

Undo

Temporary

FILE ORGANIZATIONS

Technique for physically arranging records of a file on
secondary storage

Factors for selecting file organization:
Fast data retrieval and throughput
Efficient storage space utilization
Protection from failure and data loss
Minimizing need for reorganization
Accommodating growth
Security from unauthorized use

Types of file organizations
Heap - no particular order
Sequential
Indexed
Hashed

Sequential file
organization

Records of the
file are stored In
sequence by the
primary key
field values.

Start of file
>

Scan

Y

Sequential

storage:

Average time to
find desired record

=log,n

If this were a
heap,

Average time to
find desired record
=n/2

Aces

Boilermakers

Devils

Flyers

Hawkeyes

Hoosiers

Miners

Panthers

Seminoles

INDEXED FILE ORGANIZATIONS

Storage of records sequentially or
nonsequentially with an index that allows
software to locate individual records

Index: a table or other data structure used to

determine in a file the location of records that
satisfy some condition

Primary keys are automatically indexed

Other fields or combinations of fields can also
be indexed; these are called secondary keys
(or nonunique keys)

Indexed file organization

Key
(Flyers)

Y L
Miners Seminoles

Aces

Panthers

Boilermakers

Y

Hawkeyes uses a tree search

Hoosiers Average time to find desired
record based on depth of the
tree and length of the list

Join Indexes — to speed up join operations

Customer

RowiD GustName | Giy b) Join index for matching foreign
1000 Hadley Dayten key (FK) and primary key (PK)

10002 Baines Columbus

10003 Ruskin Columbus Order

a) J Oi n | n d ex 10004 Davies e RowiD Order# Order Date Cust#(FK)

30001 05532 10/01/2015 C3861

for Com mon 30002 03478 10/01/2015 C1062

non—key City) Manager 30003 08734 10/02/2015 C1062

30004 09845 10/02/2015 C2027
COI umns Dayton E2166
Columbus EQ245

Dayton E3330 Customer
Toledo EOB74

RowlD Cust#(PK) CustMame City

10001 C2027 Hadley Dayton

Join Index 10002 C1082 Baines Columbus

CustRowlD StoreRowlD Common 10003 o042 Ruskin Columbus

Value” 10004 3861 Davies Toledo

10001 20001 Dayton

10001 20003 Dayton)
Join Index

10002 20002 Columbus

10003 20002 Columbus CustRowlD OrderRowlD

10004 20004 Toledo 10001 90004

10002 30002

10002 30003
*This column may or may not be included, as
needed. Join index could be sorted on any of tha 10004 30001
threa columns. Sometimes two join indaxes are
created, one as above and ona with the two RowlD
columns raversed.

Hashed file
organization

Hashing
algorithm

Miners

Hawkeyes

Aces

Hoosiers

Seminoles

Devils

Hash algorithm

Usually uses division-
remainder to determine
record position. Records
with same position are
grouped in lists.

Relative
record
number

Panthers

Boilermakers

TABLE 5-3 Comparative Features of Different File Organizations

Factor

File Organization

Heap

Sequential

Indexed

Hashed

Storage space

Sequential retrieval
on primary key

Random retrieval
on primary key

Multiple-key
retrieval

Deleting records

Adding new
records

Updating records

No wasted space

Requires sorting
Impractical

Possible but requires
scanning whole file

Can create wasted
space or requires
reorganization

\ery easy

Usually requires
rewriting a file.

No wasted space

Very fast
Impractical

Possible but requires
scanning whole file

Can create wasted
space or require
reorganizing

Requires rewriting
a file

Usually requires
rewriting a file

No wasted space for data but
extra space for index

Moderately fast
Moderately fast

Very fast with multiple
indexes

If space can be dynamically
allocated, this is easy but
requires maintenance of indexes

If space can be dynamically
allocated, this is easy but
requires maintenance of indexes

Easy but requires maintenance
of indexes

Extra space may be needed
to allow for addition and
deletion of records after the
initial set of records is loaded

Impractical, unless using
a hash index

Very fast

Not possible unless using
a hash index

Very easy

Very easy, but multiple keys
with the same address

require extra work

Very easy

CLUSTERING FILES

In some relational DBMSs, related records from
different tables can be stored together in the
same disk area

Useful for improving performance of join

operations

Primary key records of the main table are
stored adjacent to associated foreign key
records of the dependent table

e.g. Oracle has a CREATE CLUSTER command

UNIQUE AND NONUNIQUE INDEXES

Unique (primary) Index

Typically done for primary keys, but could also apply
to other unique fields

CREATE UNIQUE INDEX Custindex_PK ON Customer_T(CustomerlD):

Nonunique (secondary) index

Done for fields that are often used to group
individual entities (e.g. zip code, product category)

CREATE INDEX DescIndex_FK ON Product_T(Description);

RULES FOR USING INDEXES

Jse on larger tables
ndex the primary key of each table

ndex search fields (fields frequently in
WHERE clause)

Fields in SQL ORDER BY and GROUP BY
commands

When there are >100 values but not when
there are <30 values

RULES FOR USING INDEXES (CONT.)

Avoid use of indexes for fields with long
values; perhaps compress values first

If key to index is used to determine location of
record, use surrogate (like sequence number)
to allow even spread in storage area

DBMS may have limit on number of indexes
per table and number of bytes per indexed
field(s)

Be careful of indexing attributes with null
values; many DBMSs will not recognize null
values in an index search

QUERY OPTIMIZATION

Parallel query processing-possible when
working in multiprocessor systems

Overriding automatic query optimization-
allows for query writers to preempt the

automated optimization

Oracle example:

SELECT /*+ FULL(Order_T) PARALLEL(Order_T,3) */ COUNT(*)
FROM Order_T
WHERE Salesperson = “Smith”;

/* */ clause is a hint to override Oracle’s default
query plan

