
(ADVANCED) DATABASE SYSTEMS 

(DATABASE MANAGEMENTS)

PROF. DR. HASAN HÜSEYİN BALIK

(5TH WEEK)



3. OUTLINE

3. Database Design

3.1 Logical Database Design and the 

Relational Model

3.2 Physical Database Design and 

Performance



3.2 PHYSICAL DATABASE DESIGN AND 

PERFORMANCE



OBJECTİVES

 Define terms

 Describe the physical database design process

 Choose storage formats for attributes

 Select appropriate file organizations

 Describe three types of file organization

 Describe indexes and their appropriate use

 Translate a database model into efficient 
structures

 Know when and how to use denormalization



PHYSICAL DATABASE DESIGN

Purpose–translate the logical description 

of data into the technical specifications

for storing and retrieving data

Goal–create a design for storing data that 

will provide adequate performance and 

ensure database integrity, security, and 

recoverability



PHYSICAL DESIGN PROCESS

Normalized relations

Volume estimates

Attribute definitions

Response time 

expectations

Data security needs

Backup/recovery needs

Integrity expectations

DBMS technology used

Inputs

Attribute data types

Physical record descriptions   

(doesn’t always match 

logical design)

File organizations

Indexes and database 

architectures

Query optimization

Leads to

Decisions



PHYSICAL DESIGN FOR 

REGULATORY COMPLIANCE

 Sarbanes- Oxley Act (SOX) – protect investors by 

improving accuracy and reliability

 Committee of Sponsoring Organizations (COSO) 

of the Treadway Commission

 IT Infrastructure Library (ITIL)

 Control Objectives for Information and Related 

Technology (COBIT)

Regulations and standards that impact physical design decisions



Composite usage map

(Pine Valley Furniture Company)



Composite usage map

(Pine Valley Furniture Company) (cont.)

Data volumes



Composite usage map

(Pine Valley Furniture Company) (cont.)

Access Frequencies 

(per hour)



Composite usage map

(Pine Valley Furniture Company) (cont.)

Usage analysis:
14,000 purchased parts 

accessed per hour

8000 supplies accessed from 

these 14,000 purchased part 

accesses 

7000 suppliers accessed from 

these 8000 supplies accesses



Composite usage map

(Pine Valley Furniture Company) (cont.)

Usage analysis:
7500 suppliers accessed per 

hour

4000 supplies accessed from 

these 7500 supplier accesses 



4000 purchased parts 

accessed from these 4000 

supplies accesses



DESIGNING FIELDS

Field: smallest unit of application data 

recognized by system software

Field design 

Choosing data type

Coding, compression, encryption

Controlling data integrity



CHOOSING DATA TYPES



Example of a code look-up table
(Pine Valley Furniture Company)

Code saves space, but costs 

an additional lookup to 

obtain actual value



FIELD DATA INTEGRITY

 Default value–assumed value if no explicit 
value

 Range control–allowable value limitations 
(constraints or validation rules)

 Null value control–allowing or prohibiting 
empty fields

 Referential integrity–range control (and 
null value allowances) for foreign-key to 
primary-key match-ups

Sarbanes-Oxley Act (SOX) legislates importance of financial data integrity



HANDLING MISSING DATA

Substitute an estimate of the missing 

value (e.g., using a formula)

Construct a report listing missing values

 In programs, ignore missing data unless 

the value is significant (sensitivity 

testing)

Triggers can be used to perform these operations.



DENORMALIZATION

 Transforming normalized relations into non-normalized
physical record specifications

 Benefits:

 Can improve performance (speed) by reducing number of table 
lookups (i.e. reduce number of necessary join queries)

 Costs (due to data duplication)

Wasted storage space

 Data integrity/consistency threats

 Common denormalization opportunities

 One-to-one relationship (Fig. 5-3)

Many-to-many relationship with non-key attributes (associative entity) 
(Fig. 5-4)

 Reference data (1:N relationship where 1-side has data not used in 
any other relationship) (Fig. 5-5)



A possible denormalization situation: two entities with one-to-one 

relationship



A possible denormalization situation: a many-to-many relationship with 

nonkey attributes

Extra table 

access 

required 

Duplicate description possible 



A possible 

denormalization 

situation:

reference data

Extra table 

access 

required 

Data duplication 



DENORMALIZE WITH CAUTION

 Denormalization can

 Increase chance of errors and inconsistencies

Reintroduce anomalies

 Force reprogramming when business rules 
change

 Perhaps other methods could be used to 
improve performance of joins

Organization of tables in the database (file 
organization and clustering)

 Proper query design and optimization



PARTITIONING

 Horizontal Partitioning: Distributing the rows of a 
logical relation into several separate tables

 Useful for situations where different users need access to 
different rows

 Three types: Key Range Partitioning, Hash Partitioning, or 
Composite Partitioning

 Vertical Partitioning: Distributing the columns of a 
logical relation into several separate physical tables

 Useful for situations where different users need access to 
different columns

 The primary key must be repeated in each file

 Combinations of Horizontal and Vertical



PARTITIONING PROS AND CONS

 Advantages of Partitioning:
 Efficiency: Records used together are grouped together

 Local optimization: Each partition can be optimized for 
performance

 Security: data not relevant to users are segregated

 Recovery and uptime: smaller files take less time to back up

 Load balancing: Partitions stored on different disks, reduces 
contention

 Disadvantages of Partitioning:
 Inconsistent access speed: Slow retrievals across partitions

 Complexity: Non-transparent partitioning

 Extra space or update time: Duplicate data; access from 
multiple partitions



ORACLE’S HORİZONTAL PARTITIONING

 Range partitioning
 Partitions defined by range of field values

 Could result in unbalanced distribution of rows

 Like-valued fields share partitions

 Hash partitioning
 Partitions defined via hash functions

 Will guarantee balanced distribution of rows

 Partition could contain widely varying valued fields

 List partitioning
 Based on predefined lists of values for the partitioning 

key

 Composite partitioning
 Combination of the other approaches



VERTICAL PARTITIONING

 Distribution of the columns of a logical relation 

into several separate physical tables.

 Example: 

One PART table involving accounting, engineering, 

and sales attributes.

 Split into three, each with the same Product ID, one 

for each user group.

 This reduces demand on individual relations.

When combinations of data are required, perform 

join queries for all needed relations.



DESIGNING PHYSICAL DATABASE FILES

 Physical File: 

 A named portion of secondary memory allocated 
for the purpose of storing physical records

 Tablespace–named logical storage unit in which 
data from multiple tables/views/objects can be 
stored

 Tablespace components

 Segment – a table, index, or partition

 Extent–contiguous section of disk space

Data block – smallest unit of storage



DBMS terminology in an Oracle 12c environment



FILE ORGANIZATIONS

 Technique for physically arranging records of a file on 
secondary storage

 Factors for selecting file organization:

 Fast data retrieval and throughput

 Efficient storage space utilization

 Protection from failure and data loss

 Minimizing need for reorganization

 Accommodating growth

 Security from unauthorized use

 Types of file organizations

 Heap – no particular order

 Sequential

 Indexed

 Hashed



Sequential file 

organization

If this were a 

heap,
Average time to 

find desired record 

= n/2

Records of the 

file are stored in 

sequence by the 

primary key 

field values.

Sequential 

storage:
Average time to 

find desired record 

= log2n



INDEXED FILE ORGANIZATIONS

 Storage of records sequentially or 
nonsequentially with an index that allows 
software to locate individual records

 Index: a table or other data structure used to 
determine in a file the location of records that 
satisfy some condition

 Primary keys are automatically indexed

 Other fields or combinations of fields can also 
be indexed; these are called secondary keys 
(or nonunique keys)



Indexed file organization

uses a tree search
Average time to find desired 

record based on depth of the 

tree and length of the list



Join Indexes – to speed up join operations 

a) Join index 
for common 
non-key 
columns

b) Join index for matching foreign 
key (FK) and primary key (PK)



Hashed file 

organization 

Hash algorithm
Usually uses division-

remainder to determine 

record position. Records 

with same position are 

grouped in lists.





CLUSTERING FILES

 In some relational DBMSs, related records from 
different tables can be stored together in the 
same disk area

 Useful for improving performance of join 
operations

 Primary key records of the main table are 
stored adjacent to associated foreign key 
records of the dependent table

 e.g. Oracle has a CREATE CLUSTER command



UNIQUE AND NONUNIQUE INDEXES

 Unique (primary) Index

 Typically done for primary keys, but could also apply 

to other unique fields

 Nonunique (secondary) index

Done for fields that are often used to group 

individual entities (e.g. zip code, product category)



RULES FOR USING INDEXES

1. Use on larger tables

2. Index the primary key of each table

3. Index search fields (fields frequently in 
WHERE clause)

4. Fields in SQL ORDER BY and GROUP BY 
commands

5. When there are >100 values but not when 
there are <30 values



RULES FOR USING INDEXES (CONT.)

6. Avoid use of indexes for fields with long 
values; perhaps compress values first

7. If key to index is used to determine location of 
record, use surrogate (like sequence number) 
to allow even spread in storage area

8. DBMS may have limit on number of indexes 
per table and number of bytes per indexed 
field(s)

9. Be careful of indexing attributes with null 
values; many DBMSs will not recognize null 
values in an index search



QUERY OPTIMIZATION

 Parallel query processing–possible when 
working in multiprocessor systems

 Overriding automatic query optimization–
allows for query writers to preempt the 
automated optimization

 Oracle example:

/*    */ clause is a hint to override Oracle’s default 
query plan


