
(ADVANCED) DATABASE SYSTEMS

(DATABASE MANAGEMENTS)

PROF. DR. HASAN HÜSEYİN BALIK

(5TH WEEK)

3. OUTLINE

3. Database Design

3.1 Logical Database Design and the

Relational Model

3.2 Physical Database Design and

Performance

3.2 PHYSICAL DATABASE DESIGN AND

PERFORMANCE

OBJECTİVES

 Define terms

 Describe the physical database design process

 Choose storage formats for attributes

 Select appropriate file organizations

 Describe three types of file organization

 Describe indexes and their appropriate use

 Translate a database model into efficient
structures

 Know when and how to use denormalization

PHYSICAL DATABASE DESIGN

Purpose–translate the logical description

of data into the technical specifications

for storing and retrieving data

Goal–create a design for storing data that

will provide adequate performance and

ensure database integrity, security, and

recoverability

PHYSICAL DESIGN PROCESS

Normalized relations

Volume estimates

Attribute definitions

Response time

expectations

Data security needs

Backup/recovery needs

Integrity expectations

DBMS technology used

Inputs

Attribute data types

Physical record descriptions

(doesn’t always match

logical design)

File organizations

Indexes and database

architectures

Query optimization

Leads to

Decisions

PHYSICAL DESIGN FOR

REGULATORY COMPLIANCE

 Sarbanes- Oxley Act (SOX) – protect investors by

improving accuracy and reliability

 Committee of Sponsoring Organizations (COSO)

of the Treadway Commission

 IT Infrastructure Library (ITIL)

 Control Objectives for Information and Related

Technology (COBIT)

Regulations and standards that impact physical design decisions

Composite usage map

(Pine Valley Furniture Company)

Composite usage map

(Pine Valley Furniture Company) (cont.)

Data volumes

Composite usage map

(Pine Valley Furniture Company) (cont.)

Access Frequencies

(per hour)

Composite usage map

(Pine Valley Furniture Company) (cont.)

Usage analysis:
14,000 purchased parts

accessed per hour

8000 supplies accessed from

these 14,000 purchased part

accesses 

7000 suppliers accessed from

these 8000 supplies accesses

Composite usage map

(Pine Valley Furniture Company) (cont.)

Usage analysis:
7500 suppliers accessed per

hour

4000 supplies accessed from

these 7500 supplier accesses



4000 purchased parts

accessed from these 4000

supplies accesses

DESIGNING FIELDS

Field: smallest unit of application data

recognized by system software

Field design

Choosing data type

Coding, compression, encryption

Controlling data integrity

CHOOSING DATA TYPES

Example of a code look-up table
(Pine Valley Furniture Company)

Code saves space, but costs

an additional lookup to

obtain actual value

FIELD DATA INTEGRITY

 Default value–assumed value if no explicit
value

 Range control–allowable value limitations
(constraints or validation rules)

 Null value control–allowing or prohibiting
empty fields

 Referential integrity–range control (and
null value allowances) for foreign-key to
primary-key match-ups

Sarbanes-Oxley Act (SOX) legislates importance of financial data integrity

HANDLING MISSING DATA

Substitute an estimate of the missing

value (e.g., using a formula)

Construct a report listing missing values

 In programs, ignore missing data unless

the value is significant (sensitivity

testing)

Triggers can be used to perform these operations.

DENORMALIZATION

 Transforming normalized relations into non-normalized
physical record specifications

 Benefits:

 Can improve performance (speed) by reducing number of table
lookups (i.e. reduce number of necessary join queries)

 Costs (due to data duplication)

Wasted storage space

 Data integrity/consistency threats

 Common denormalization opportunities

 One-to-one relationship (Fig. 5-3)

Many-to-many relationship with non-key attributes (associative entity)
(Fig. 5-4)

 Reference data (1:N relationship where 1-side has data not used in
any other relationship) (Fig. 5-5)

A possible denormalization situation: two entities with one-to-one

relationship

A possible denormalization situation: a many-to-many relationship with

nonkey attributes

Extra table

access

required

Duplicate description possible

A possible

denormalization

situation:

reference data

Extra table

access

required

Data duplication

DENORMALIZE WITH CAUTION

 Denormalization can

 Increase chance of errors and inconsistencies

Reintroduce anomalies

 Force reprogramming when business rules
change

 Perhaps other methods could be used to
improve performance of joins

Organization of tables in the database (file
organization and clustering)

 Proper query design and optimization

PARTITIONING

 Horizontal Partitioning: Distributing the rows of a
logical relation into several separate tables

 Useful for situations where different users need access to
different rows

 Three types: Key Range Partitioning, Hash Partitioning, or
Composite Partitioning

 Vertical Partitioning: Distributing the columns of a
logical relation into several separate physical tables

 Useful for situations where different users need access to
different columns

 The primary key must be repeated in each file

 Combinations of Horizontal and Vertical

PARTITIONING PROS AND CONS

 Advantages of Partitioning:
 Efficiency: Records used together are grouped together

 Local optimization: Each partition can be optimized for
performance

 Security: data not relevant to users are segregated

 Recovery and uptime: smaller files take less time to back up

 Load balancing: Partitions stored on different disks, reduces
contention

 Disadvantages of Partitioning:
 Inconsistent access speed: Slow retrievals across partitions

 Complexity: Non-transparent partitioning

 Extra space or update time: Duplicate data; access from
multiple partitions

ORACLE’S HORİZONTAL PARTITIONING

 Range partitioning
 Partitions defined by range of field values

 Could result in unbalanced distribution of rows

 Like-valued fields share partitions

 Hash partitioning
 Partitions defined via hash functions

 Will guarantee balanced distribution of rows

 Partition could contain widely varying valued fields

 List partitioning
 Based on predefined lists of values for the partitioning

key

 Composite partitioning
 Combination of the other approaches

VERTICAL PARTITIONING

 Distribution of the columns of a logical relation

into several separate physical tables.

 Example:

One PART table involving accounting, engineering,

and sales attributes.

 Split into three, each with the same Product ID, one

for each user group.

 This reduces demand on individual relations.

When combinations of data are required, perform

join queries for all needed relations.

DESIGNING PHYSICAL DATABASE FILES

 Physical File:

 A named portion of secondary memory allocated
for the purpose of storing physical records

 Tablespace–named logical storage unit in which
data from multiple tables/views/objects can be
stored

 Tablespace components

 Segment – a table, index, or partition

 Extent–contiguous section of disk space

Data block – smallest unit of storage

DBMS terminology in an Oracle 12c environment

FILE ORGANIZATIONS

 Technique for physically arranging records of a file on
secondary storage

 Factors for selecting file organization:

 Fast data retrieval and throughput

 Efficient storage space utilization

 Protection from failure and data loss

 Minimizing need for reorganization

 Accommodating growth

 Security from unauthorized use

 Types of file organizations

 Heap – no particular order

 Sequential

 Indexed

 Hashed

Sequential file

organization

If this were a

heap,
Average time to

find desired record

= n/2

Records of the

file are stored in

sequence by the

primary key

field values.

Sequential

storage:
Average time to

find desired record

= log2n

INDEXED FILE ORGANIZATIONS

 Storage of records sequentially or
nonsequentially with an index that allows
software to locate individual records

 Index: a table or other data structure used to
determine in a file the location of records that
satisfy some condition

 Primary keys are automatically indexed

 Other fields or combinations of fields can also
be indexed; these are called secondary keys
(or nonunique keys)

Indexed file organization

uses a tree search
Average time to find desired

record based on depth of the

tree and length of the list

Join Indexes – to speed up join operations

a) Join index
for common
non-key
columns

b) Join index for matching foreign
key (FK) and primary key (PK)

Hashed file

organization

Hash algorithm
Usually uses division-

remainder to determine

record position. Records

with same position are

grouped in lists.

CLUSTERING FILES

 In some relational DBMSs, related records from
different tables can be stored together in the
same disk area

 Useful for improving performance of join
operations

 Primary key records of the main table are
stored adjacent to associated foreign key
records of the dependent table

 e.g. Oracle has a CREATE CLUSTER command

UNIQUE AND NONUNIQUE INDEXES

 Unique (primary) Index

 Typically done for primary keys, but could also apply

to other unique fields

 Nonunique (secondary) index

Done for fields that are often used to group

individual entities (e.g. zip code, product category)

RULES FOR USING INDEXES

1. Use on larger tables

2. Index the primary key of each table

3. Index search fields (fields frequently in
WHERE clause)

4. Fields in SQL ORDER BY and GROUP BY
commands

5. When there are >100 values but not when
there are <30 values

RULES FOR USING INDEXES (CONT.)

6. Avoid use of indexes for fields with long
values; perhaps compress values first

7. If key to index is used to determine location of
record, use surrogate (like sequence number)
to allow even spread in storage area

8. DBMS may have limit on number of indexes
per table and number of bytes per indexed
field(s)

9. Be careful of indexing attributes with null
values; many DBMSs will not recognize null
values in an index search

QUERY OPTIMIZATION

 Parallel query processing–possible when
working in multiprocessor systems

 Overriding automatic query optimization–
allows for query writers to preempt the
automated optimization

 Oracle example:

/* */ clause is a hint to override Oracle’s default
query plan

