
(ADVANCED) DATABASE SYSTEMS

(DATABASE MANAGEMENTS)

PROF. DR. HASAN HÜSEYİN BALIK

(4TH WEEK)

3. OUTLINE

3. Database Design

3.1 Logical Database Design and the

Relational Model

3.2 Physical Database Design and

Performance

3.1 LOGICAL DATABASE DESIGN AND THE

RELATIONAL MODEL

OBJECTİVES

 Define terms

 List five properties of relations

 State two properties of candidate keys

 Define first, second, and third normal form

 Describe problems from merging relations

 Transform E-R and EER diagrams to relations

 Create tables with entity and relational integrity
constraints

 Use normalization to decompose anomalous
relations to well-structured relations

COMPONENTS OF RELATIONAL MODEL

Data structure

Tables (relations), rows, columns

Data manipulation

Powerful SQL operations for retrieving and

modifying data

Data integrity

Mechanisms for implementing business rules

that maintain integrity of manipulated data

RELATION

 A relation is a named, two-dimensional table of data.

 A table consists of rows (records) and columns (attribute or

field).

 Requirements for a table to qualify as a relation:

 It must have a unique name.

 Every attribute value must be atomic (not multivalued, not composite).

 Every row must be unique (can’t have two rows with exactly the same

values for all their fields).

 Attributes (columns) in tables must have unique names.

 The order of the columns must be irrelevant.

 The order of the rows must be irrelevant.

NOTE: All relations are in 1st Normal form.

CORRESPONDENCE WITH E-R MODEL

 Relations (tables) correspond with entity types and
with many-to-many relationship types.

 Rows correspond with entity instances and with
many-to-many relationship instances.

 Columns correspond with attributes.

 NOTE: The word relation (in relational database) is

NOT the same as the word relationship (in E-R
model).

KEY FIELDS

 Keys are special fields that serve two main purposes:

 Primary keys are unique identifiers of the relation.
Examples include employee numbers, social security
numbers, etc. This guarantees that all rows are unique.

 Foreign keys are identifiers that enable a dependent
relation (on the many side of a relationship) to refer to its
parent relation (on the one side of the relationship).

 Keys can be simple (a single field) or composite (more
than one field).

 Keys usually are used as indexes to speed up the
response to user queries

Primary Key

Foreign Key
(implements 1:N relationship

between customer and order)

Combined, these are a composite

primary key (uniquely identifies the

order line)…individually they are

foreign keys (implement M:N

relationship between order and product)

Schema for four relations (Pine Valley Furniture Company)

INTEGRITY CONSTRAINTS

 Domain Constraints

 Allowable values for an attribute

 Entity Integrity

No primary key attribute may be null. All primary

key fields MUST contain data values.

 Referential Integrity

Rules that maintain consistency between the

rows of two related tables.

Domain definitions enforce domain integrity constraints.

INTEGRITY CONSTRAINTS

 Referential Integrity–rule states that any foreign key

value (on the relation of the many side) MUST match a

primary key value in the relation of the one side. (Or the

foreign key can be null)

 For example: Delete Rules

Restrict–don’t allow delete of “parent” side if related rows

exist in “dependent” side

Cascade–automatically delete “dependent” side rows that

correspond with the “parent” side row to be deleted

Set-to-Null–set the foreign key in the dependent side to null

if deleting from the parent side not allowed for weak

entities

Referential integrity constraints (Pine Valley Furniture)

Referential

integrity

constraints are

drawn via arrows

from dependent to

parent table

SQL table definitions

Referential

integrity

constraints are

implemented with

foreign key to

primary key

references.

TRANSFORMING EER DIAGRAMS INTO

RELATIONS

Mapping Regular Entities to Relations

 Simple attributes: E-R attributes map

directly onto the relation

 Composite attributes: Use only their

simple, component attributes

 Multivalued Attribute: Becomes a

separate relation with a foreign key

taken from the superior entity

(a) CUSTOMER

entity type with

simple

attributes

Mapping a regular entity

(b) CUSTOMER relation

(a) CUSTOMER

entity type with

composite

attribute

Mapping a composite attribute

(b) CUSTOMER relation with address detail

Mapping an entity with a multivalued attribute

One–to–many relationship between original entity and new relation

(a)

Multivalued attribute becomes a separate relation with foreign key

(b)

TRANSFORMING EER DIAGRAMS INTO

RELATIONS (CONT.)

Mapping Weak Entities

Becomes a separate relation with a

foreign key taken from the superior entity

Primary key composed of:

Partial identifier of weak entity

Primary key of identifying relation (strong

entity)

Example of mapping a weak entity

a) Weak entity DEPENDENT

NOTE: the domain constraint

for the foreign key should

NOT allow null value if

DEPENDENT is a weak entity

Foreign key

Composite primary key

Example of mapping a weak entity (cont.)

b) Relations resulting from weak entity

TRANSFORMING EER DIAGRAMS INTO

RELATIONS (CONT.)

Mapping Binary Relationships

One-to-Many–Primary key on the one side

becomes a foreign key on the many side

Many-to-Many–Create a new relation with the

primary keys of the two entities as its primary

key

One-to-One–Primary key on mandatory side

becomes a foreign key on optional side

Example of mapping a 1:M relationship

a) Relationship between customers and orders

Note the mandatory one

b) Mapping the relationship

Again, no null value in the

foreign key…this is because

of the mandatory minimum

cardinality.

Foreign key

Example of mapping an M:N relationship

a) Completes relationship (M:N)

The Completes relationship will need to become a separate relation.

new

intersection

relation

Foreign key

Foreign key

Composite primary key

Example of mapping an M:N relationship (cont.)

b) Three resulting relations

Example of mapping a binary 1:1 relationship

a) In charge relationship (binary 1:1)

Often in 1:1 relationships, one direction is optional

b) Resulting relations

Example of mapping a binary 1:1 relationship (cont.)

Foreign key goes in the relation on the optional side,

matching the primary key on the mandatory side

TRANSFORMING EER DIAGRAMS INTO

RELATIONS (CONT.)

Mapping Associative Entities

Identifier Not Assigned

Default primary key for the association
relation is composed of the primary keys of
the two entities (as in M:N relationship)

Identifier Assigned

It is natural and familiar to end-users

Default identifier may not be unique

Example of mapping an associative entity

a) An associative entity

Example of mapping an associative entity (cont.)

b) Three resulting relations

Composite primary key formed from the two foreign keys

Example of mapping an associative entity with

an identifier

a) SHIPMENT associative entity

Example of mapping an associative entity with

an identifier (cont.)

b) Three resulting relations

Primary key differs from foreign keys

TRANSFORMING EER DIAGRAMS INTO

RELATIONS (CONT.)

Mapping Unary Relationships

One-to-Many–Recursive foreign key in the

same relation

Many-to-Many–Two relations:

One for the entity type

One for an associative relation in which

the primary key has two attributes, both

taken from the primary key of the entity

Mapping a unary 1:N relationship

(a) EMPLOYEE

entity with unary

relationship

(b)

EMPLOYEE

relation with

recursive

foreign key

Mapping a unary M:N relationship

(a) Bill-of-materials

relationships (unary M:N)

(b) ITEM and

COMPONENT

relations

TRANSFORMING EER DIAGRAMS INTO

RELATIONS (CONT.)

Mapping Ternary (and n-ary)

Relationships

One relation for each entity and one for

the associative entity

Associative entity has foreign keys to

each entity in the relationship

Mapping a ternary relationship

a) PATIENT TREATMENT Ternary relationship with

associative entity

b) Mapping the ternary relationship PATIENT TREATMENT

Remember

that the

primary key

MUST be

unique.

Mapping a ternary relationship (cont.)

This is why

treatment date

and time are

included in the

composite

primary key.

But this makes a

very

cumbersome

key…

It would be

better to create a

surrogate key

like Treatment#.

TRANSFORMING EER DIAGRAMS

INTO RELATIONS (CONT.)

Mapping Supertype/Subtype Relationships

One relation for supertype and for each subtype

 Supertype attributes (including identifier and
subtype discriminator) go into supertype relation

 Subtype attributes go into each subtype; primary
key of supertype relation also becomes primary
key of subtype relation

 1:1 relationship established between supertype
and each subtype, with supertype as primary
table

Supertype/subtype relationships

Mapping supertype/subtype relationships to relations

These are implemented as one-to-one

relationships.

DATA NORMALIZATION

Primarily a tool to validate and improve

a logical design so that it satisfies

certain constraints that avoid

unnecessary duplication of data

The process of decomposing relations

with anomalies to produce smaller,

well-structured relations

WELL-STRUCTURED RELATIONS

 A relation that contains minimal data redundancy
and allows users to insert, delete, and update
rows without causing data inconsistencies

 Goal is to avoid anomalies

 Insertion Anomaly–adding new rows forces user to
create duplicate data

 Deletion Anomaly–deleting rows may cause a loss of
data that would be needed for other future rows

 Modification Anomaly–changing data in a row forces
changes to other rows because of duplication

General rule of thumb: A table should not pertain to

more than one entity type.

EXAMPLE

Question–Is this a relation? Answer–Yes: Unique rows and no

multivalued attributes

Question–What’s the primary key? Answer–Composite: EmpID, CourseTitle

ANOMALIES IN THIS TABLE

 Insertion–can’t enter a new employee without having

the employee take a class (or at least empty fields of

class information)

 Deletion–if we remove employee 140, we lose

information about the existence of a Tax Acc class

 Modification–giving a salary increase to employee 100

forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) in this

one relation. This results in data duplication and an

unnecessary dependency between the entities.

Steps in normalization

3rd normal form is

generally considered

sufficient

FUNCTIONAL DEPENDENCIES AND KEYS

 Functional Dependency: The value of one
attribute (the determinant) determines
the value of another attribute

 Candidate Key:

 A unique identifier. One of the candidate keys
will become the primary key

E.g., perhaps there is both credit card number
and SS# in a table…in this case both are
candidate keys.

 Each non-key field is functionally dependent
on every candidate key.

FIRST NORMAL FORM

No multivalued attributes

Every attribute value is atomic

Fig. in slide 49 is not in 1st Normal
Form (multivalued attributes) it is
not a relation.

Fig. İn slide 50 is in 1st Normal form.

All relations are in 1st Normal Form.

Table with multivalued attributes, not in 1st normal form

Note: This is NOT a relation.

Table with no multivalued attributes and unique rows, in 1st

normal form

Note: This is a relation, but not a well-structured one.

ANOMALIES IN THIS TABLE

 Insertion–if new product is ordered for order 1007 of
existing customer, customer data must be re-entered,
causing duplication

 Deletion–if we delete the Dining Table from Order
1006, we lose information concerning this item’s finish
and price

 Update–changing the price of product ID 4 requires
update in multiple records

Why do these anomalies exist?

Because there are multiple themes (entity types) in

one relation. This results in duplication and an

unnecessary dependency between the entities.

SECOND NORMAL FORM

1NF PLUS every non-key attribute is fully

functionally dependent on the ENTIRE

primary key

Every non-key attribute must be defined by

the entire key, not by only part of the key

No partial functional dependencies

OrderID OrderDate, CustomerID, CustomerName, CustomerAddress

Therefore, NOT in 2nd Normal Form

CustomerID CustomerName, CustomerAddress

ProductID ProductDescription, ProductFinish, ProductStandardPrice

OrderID, ProductID OrderQuantity

Functional dependency diagram for INVOICE

Partial dependencies are removed, but there

are still transitive dependencies

Getting it into
Second Normal Form

Removing partial dependencies

THIRD NORMAL FORM

 2NF PLUS no transitive dependencies
(functional dependencies on non-primary-key
attributes)

 Note: This is called transitive, because the
primary key is a determinant for another
attribute, which in turn is a determinant for a
third

 Solution: Non-key determinant with transitive
dependencies go into a new table; non-key
determinant becomes primary key in the new
table and stays as foreign key in the old table

Transitive dependencies are removed.

Removing partial dependencies

Getting it into
Third Normal
Form

Figure shows the result of
normalization, yielding four separate
relations where initially there was
only one.

MERGING RELATIONS

 View Integration–Combining entities from multiple
ER models into common relations

 Issues to watch out for when merging entities from
different ER models:

 Synonyms–two or more attributes with different names
but same meaning

 Homonyms–attributes with same name but different
meanings

 Transitive dependencies–even if relations are in 3NF
prior to merging, they may not be after merging

 Supertype/subtype relationships–may be hidden prior to
merging

Enterprise keys

a) Relations with

enterprise key

b) Sample data

with enterprise

key

