SEN361 Computer Organization

Prof. Dr. Hasan Hiiseyin BALIK
(9" Week)

o

Outline | |
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Ihstruction.Sets: ,Add.ressing Modes, and
Formats

3.3 Processor Structure and Function
3.4 Reduced Instruction Set Computers

3.9 Instruction-Level Parallelism and Superscalar
Processors ' | |

3.4 Reduced Instruction Set Computers (RISC)

3.4 Outline

m Instruction Execution Characteristics
m The Use of a Large Register File

m Compiler-Based Register Optimization
N Redﬁced Instruétion Set Aréhitecture |
m RISC Pipelining

= MIPS R4000

m Sparc

m RISC Versus CISC Controversy

[
Major advances since the birth of the

computer

m The -family cohcept

m Microprogrammed control unit
-. Cache mémory . .
m Pipelining

n Multiple processors

m Multiple processors

n Reduced instrﬁction set éomputer (RISC) architecture

Characteristics of Some CISCs, RISCs,
Superscalar Processors

Complex Instruction Set Reduced Instruction Superscalar
(CISCHComputer Set (RISC) Computer
Characteristic IEM VAX Intel SPFARC MIFPS FowerPC Ultra MIFPS
370168 117780 ROLRG R 4000 SPARC R 10000
Year developed 1973 1978 1989 1987 1991 1993 1996 1996
Number of 208 303 235 69 94 235
instructions
Instruction size (hytes) 2-6 2=-57 1-11 - - - - -
Addressing modes - 22 11 | l 2 | |
Number of general- 16 16] 40 - 5320 32 32 40 - 5320 32
purpose registers
Control memory size 420 480 246 — — — — —
{ Khits)
Cache size (KByvtes) 04 04 i 32 128 [632 32 64

Characteristics of Some CISCs, RISCs, and Superscalar Processors

Instruction | o .

-High-level languages (HLLs)

E . *Allow the programmer to express algorithms more
xe Cutlon concisely

*Allow the compiler to take care of details that are not
. o e important in the programmer’s expression of
Characteristics = swnms
*Often support naturally the use of structured
' ' " programming and/or object-oriented design

Execution sequencing

, Semantic gap

*Determines the controland = = /S 5

pipeline organization *The difference between the

" operations provided in HLLs
and those provided in computer

architecture

‘Operands used

*The types of operands and the OP erations p erformed

frequency of their use determine *Determine the functions to be
the memory organization for performed by the processor and
storing them and the addressing . . its interaction with memory
modes for accessing them

Weighted Relative Dynamic Frequency-

of HLL Operations

Machine-Instruction

Memory-Reference

Dvnamic (Occurrence Weighted Weighted
Pascal C Pascal C Pascal C
ASSIGN 45% IR | 3% | 3% | 45 | 5%
LOOP 5% A% 425 324G 334G 265
CALL | 5% | 2% 31% 334G 4475 45%
IF 294 43% | 1% 21% TG | 3%
GOTO — 3% — — — —
OTHER 6% | % A% | % 2G | G

Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

Operands

Pascal

C

Average

Integer Constant 16% 25% 20%
Scalar Variable A8 3% 3%
Amay/Structure 26% 24% 25%

Dynamic Percentage of Operands

Procedure Arguments and
Local Scalar Variables

Fercentage of Executed Compiler, Interpreter, and Small Nonnumeric
Procedure Calls With Tvpesetter Programs

=3 arguments 0=T% 0=3%

=3 arguments 0=3% 0%

=8 words of arguments and 1=20% O=65%

local scalars

=12 words of arguments and | =65 0=3%
local scalars

Procedure Arguments and Local Scalar Variables

+
Implications

m HLLs can best be supported by optimizing performance of.
the most time-consuming features of typical HLL programs

m Three elements characterize RISC architectures:

. m Use a large. number of registers or use a compiler to optimize
register usage

m Careful attention needs to be paid to the design of instruction
pipelines

. m Instructions should have predictable costs and be consistent with
a high-performance implementation

. | | | |
The Use of a Large Register File

Software Solution

m Requires compiler to allocate m More registers

registers
m Thus more variables will be in

m Allocates based on most used - registers
variables in a given time

m Requires sophisticated
program analysis

. | | | |
Overlapping Register Windows

Parameter Local Temporary
Registers Registers Registers

e @
| Call/Return |
(—--.._J‘\h..—-—\
Parameter Local Temporary
Registers Registers Registers

Level J

Level J+1

Figure 15.1 Overlapping Register Windows

Restore Save

Saved
window
pointer

Circular Buffer
Organization of
Overlapped
Windows

Current

window

pointer
-‘_y '
_W

Figure 15.2 Circular-Buffer Organization of Overlapped Windows

- Cllobal Variables

m Variables declared as global in an HLL can be aésigned memdry
- locations by the compiler and all machine instructions that
reference these variables will use. memory reference operands

m However, for frequently accessed global variables this scheme is
inefficient

L Alternauve 1s to 1ncorporate a set of global reglsters in the
. processor

m These registers would be fixed in number and available to all
procedures

m A unified numbermg scheme can be used to s1mp11fy the instruction
format : :

m There is an increased hardware burden to accommodate the
split in register addressing

m In addition, the linker must decide which global variables
should be assigned to registers

Characteristics of Large-Register-File and
Cache Organizations

Large Register File Cache
All local scalars Recently-used local scalars
Individual variables Blocks of memory
Compiler-assigned global variables Recently-used global variables
Save/Restore based on procedure Save/Restore based on cache
nesting depth replacement algorithm
Register addressing Memory addressing
Multiple operands addressed and One operand addressed and accessed
accessed in one cycle per cycle

Characteristics of Large-Register-File and Cache Organizations

Instruction

[R |

Registers

L 4 _,—b
Decoder

Wik

Referencing a

v

— Data

{a) Windows-based register file

Instruction

Scalar s

| A

Tags

Dhata

ib) Cache

Data

Figure 15.3 Referencing a Scalar

Graph Coloring Approach

Symbaolic Registers

Time

Rl: R2 R3

Actual Registers

{a) Time sequence of active use of registers _ (b) Register interference graph

Figure 154 Graph Coloring Approach

. |
Why CISC ?

(Complex Instruction Set Computer)

m There is a trend to richer instruction sets which include a
larger and more complex number of instructions

m Two principal reasons for this trend.:
m A desire to simplify compilers
m A desire to improve performance

m There are two advantages to smaller programs:
m The program takes up less memory
= Should improve pérformance |
m Fewer instructions means fewer instruction bytes to be fetched

m In a paging environment smaller programs occupy fewer
pages, reducing page faults

m More instructions fit in cache(s)

- Code Size Relative toRISC 1

[PATTE2a]
11 C Programs

[KATES3]
12 C Programs

[HEATE4]
3 C Programs

RISC I

VAX-11/780
MGEO00

ZR002
FDP-11570

|.00

L5
.9

1.2

.4

|.00
.67

.71

.00

.9
.12

Code Size Reiative to RISC I

Characteristicsof Reduced =1

Instruction Set Architectures

. One m?'Chlne * Machine cycle --- the time it takes to fetch two operands from
1instruction per registers, perform an ALU operation, and store the result in a
. register

RegISter'tO'regISter * Only simple LOAD and STORE operations accessing memory
Op erations This simplifies the instruction set and therefore the control unit

Simple addressing
modes

 Simplifies the instruction set and the control unit

. . . * Generally only one or a few formats are used
Slmple instruction * Instruction length is fixed and aligned on word boundaries

forma_ts * Opcode decoding and register operand accessing can occur
simultaneously

SRR - GRS - RS -)

Comparison of Register-to-Register and
Memory-to-Memory Approaches

& 16 16 1
Add B C A

Memory to memory

I= 56,D=96 M= 152

(a) A= B+C
8 : 16 o [16

Add B C A

Add A C B

Sub B D

Memory to memory
I= 168, D= 288 M = 456

MA+-=B+C:B+=A+C:D+~D-B

I = number of bytes occupied by executed instructions
D = number of bytes occupied by data
M = total memory traffic =1+ D

B 4 16
Load EB B
Load EC B
Add E | REB | RC

A
Store E A
A

Register to memory
[=104,D =9, M =200

& e i =
Add | RA [RB | RC
Add | RB [RA | RC
Suhb ED | ED | KB

Fegister to register

I=60D=0,M=060

Figure 155 Two Comparisons of Register-to-Register and Memory-to-Memory Approaches

Characteristics of Some ProcessorJdii

Mumber Mumber of
o Max Lond! ' store Max hits for Mumber of
instmc- Imslre- Mumber of combined number of Unaligned Max integer hits for FP
ticm tion size | addressing [ndirect with ITIETE addressing | MNumber of register register

Processor sizes in bytes mdes nddressing arithmetic operands allowed MMU uses specifier specifier
AN DM | R I no rio I no I # 5l
MIFE R2000 | R I na rio I Mo I 5 -
SPARC | R 2 na rio I Mo I 5 -
MCEEODD | R 3 no o I no I 5 -
HF FA | ! 1] n rio 1 no I 5 -
[EM RT/PC 2 ! I n rio 1 no I 4 5[
[BM RS0 | R 4 na rio I Vs I 5 §
[nitel 1860 1 - 4 nit no | no I 5 4
[BNT 30 4 4 o no” yes 2 yes - -4 2
[ntel 20486 12 12 15 no® L= 2 ViR 4 3 3
MEC 3206 1] 21 11 yes L= 2 ViR 4 3 3
MCEEDHD L1 22 H Ves yes 2 yes # 4 3
WAX il i] Sy 1 yes yes 6 yes 4 4 1]
Clipper 4 B g no no |] 2 44 Eh
[nitel B056G0 i B B n no | ves® — 5 Eh

a RISC that does not conform to this characteristic.
b CISC that does not conform o this characteristic.

The Effects of Pipelining

Load rA=—M 1 D Load
Load rB=—M 1IEID Load
Add T1C+—TrA+IB 1lE Add
Store . M'=—1C 1IE|D Store
Branch X I1IE Branch
T NOOP
(a) Sequential execution
Load rA-—M E|D Load
load rB-—M [|[E|D]| Load
NOOP [|E NOOP
Add rC=—rA +rB [|E NOOP
Store M erC [|E|D Add
Branch X . [|E _ Store
NOOP [|E Branch
NOOP
NOOP

{c) Three-stage pipelined timing

rA — M I D
B — M E|D
rC «TA + B 1 E
. M= 1C I1(E|D
X | E
| .
i(b) Two-stage pipelined timing
rA—M E,|E:|D
rB — [ﬂ_ | E] Ez D
I [E|Ez
I [Ej|Ez
rC«—rA+rB I [E,|E>
M = I'C_ | E] Ej D
X I |E;|E:
I |E|Ez
1 |E|E:

(d) Four-stage pipelined timing

Figure 15.6 - The Effects of Pipelining

+
Optimization of Pipelining

m Delayed branch
= Does not take effect until after execution of followmg 1nstruct1on
= This following instruction is the delay slot

m Delayed Load
m Register to be target is locked by processor
m Continue execution of instruction stream until register required
m Idle until load is complete _
m Re-arranging instructions can allow useful work wh11e loading

Loop Unrolling
m Replicate body of loop a number of times
- m Iterate loop fewer times
m Reduces loop overhead
m Increases instruction parallelism
m Improved register, data cache, or TLB locality

- Normal and Delayed Branch

Address Normal Branch Delayed Branch Optimized
Delayved Branch

L (30 LOAD X, rA LOAD X, rA LOAD X, rA
101 ADD 1.rA ADD 1.rA JUMP 105
|02 JUMP 105 JUMP 106 ADD l.rA
103 ADD rA, B NOOP ADD rA B
1004 SUB C.rB ADD rA (B SUR C.rB
105 STORE rA & SUB rC. B STORE rA, £
| 06 STORE rA £

Use of the
Delayed Branch

100 LOAD X, rA
101 ADI 1, rA
102 JUMP 105
103 ADD rA, rB
105 STORE rA, £

100 LOAD X, rA
11 ADD 1, rA
102 JUMF 106
103 NOOP

106 STORE rA, £

100 LOAD X, Ar

101 JUMP 105
102 ADD 1, rA
105 STORE rA, £

Time

v

1 2 3 4 5 6 7
I E D
I E
I E
I E
I E D
(a) Traditional Pipeline
I E D
I E
| E
I E

(b) RISC Pipeline with Inserted NOOP

=

| E D

(¢} Reversed Instructions

Figure 15.7 Use of the Delayed Branch

One of the first
commercially available
RISC chip sets was
developed by MIPS
Technology Inc.

Uses 64 bits for all
internal and external
data paths and for

addresses, registers, and |

the ALU

MIPS R4000

Inspired by an
experimental system
developed at Stanford

Is partitioned into two
sections, one containing
the CPU and the other
containing a coprocessor
for memory
management

Provides for up to 128
Kbytes of high-speed
cache, half each for
instructions and data

Has substantially the
same architecture and
instruction set of the
earlier MIPS designs
(R2000 and R3000)

Supports thirty-two 64-
bit registers

] Description oF Description
Load'Store Instroctions Multiplv/Divide Instructions
LE Load Byvte MULT Multiply
LEL Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword B RY Divide
LHL Load Halfword Unsigned DIV Divide Unsigned
LW Load Word MEHI Muove From HI
LWL Load Waord Lefi MTHI Move To HI
LWH Load Word Right MFLO Move From 1O
sB Store Byte MTLO Move To LO
5H Store Halfword Jump and Branch Instructions
W Store Wiornd 1 Jump
SWL Store Word Left JAL Jumip and Link
SWR Store Word Right IR Jump o Begister
Arithmetic Instroctions (ALL Immediate) IALE Jumip and Link BEegister
ADDI Audd Immiediate BE(Q) Branch on Equal
ADDITT Add Immediate Unsigned BME Branch on Mot Egual
SLTI Set on Less Than Immediate BLEZ Branch on Less Than or Equal to £ero
SLTIU Set on Less Than Immediate Unsigned BGTE Branch on Greater Than Zero
ANDI AND Immediate BLTZ Branch on Less Than Zern
OR1 OF Immediate BGES Branch on Greater Than or Egual to Zero
XNORI Exclusive-C0F Immediate BLTZAL Bramch on Less Than Zero And Link
LLIT Load Upper Immediate BGEZAL Branch on Greater Than or Egual to Zero
And Link
Arithmetic Instructions (3-pperand, R-tvpe) Coprocessor Insiructions
ADD Audd LWCx Load Word te Coprocessor
ADDU Add Unsigned SWCz Store Word to Coprocessor
SUB Subtract MTCz Move To Coprocessor
SUBU Subtract Unsigned MFCx Move From Coprocessor
SLT Set on Less Than CTCe Move Control Toe Coprocessoer
SLTU Set on Less Than Unsigned CFCz Move Control From Coprocessor
AND AND COPz Coprocessor Operation
R R BC:T Branch on Coprocessor = True
XOR Exclusive-CHR BCzF Branch on Coprocessor @ False
NOR NOR Special Instructions
Shift Instructiomns SYRCALL Svystemn Call

SLL Shift Left Logical BREEAK Break
SRL Shift Right Logical
SRA Shift Right Arithmetic
SLLY Shift Left Logical Yariahle
SRLYV Shift Right Logical Varinhle
SRAV Shift Right Arithmetic Variahle

MIPS
R-Series
Instruction
Set

MIPS Instruction Formats

(i 5 5 G
I-type Operation rs It Immediate
J(immediate)
[' 26
-T_ “type Operation Target
{jump)
G 5 5 5 5 (1]
R'T_F'F'E Operation 5 Function
(register)

Operation Operation code

Is Source register specifier
1} Source/destination register specifier
- Immediate Immediate. branch, or address displacement
Target Jump target address
rd - Destination register specifier
Shift Shift amount

" Function ALU/shift function specifier

Figure 15.9 MIPS Instruction Formats

Enhancing the R3000 Pipeline

Clock Cycle
P P2 ¥ L) L L by Ny) L
IF RD ALU MEM WEB
I-Cache RF ALUOP D-Cache WB
ITLB IDEC DA DTLB
1A
(a) Detailed R3000 pipeline
IF = Instruction fetch
Cycle Cycle Cycle Cycle ‘ Cycle | Cycle RD = Read
: MEM = Memaory access’
ITLB | I-Cache |RF| ALU | DTLB |D-Cache|WB WB = Write back to register file
[-Cache = Instruction cache access
EF = Fetch operand from register
(b) Modified R3000 pipeline with reduced latencies D-Cache = Data cache access
= = ITLB = Instruction address translation
IDEC = Instruction decode
: LA = Compuie instruction address
DA = Calculate data virtual address
Cycle Cycle ‘ Cycle | Cycle ‘ Cycle _DTLB = Data address tm’_ns]utinn
TC = Data cache tag check
ITLB |RF| ALU |D-Cache] TC |WB e ins

(c) Optimized R3000 pipeline with parallel TLB and cache accesses

Figure 15.10 Enhancing the R3000 Pipeline

R3000 Pipeline Stages

PFipeling
Stage Phase Function
IF il Using the TLB. translate an instruction virtual address to a physical
address (after a branching decision).
IF [send the physical address to the instruction address.
KD &l Return instruction from instruction cache.
Compare tags and validity of fetched instruction.
RD $2 Decode instruction.
Read register file.
If branch, calculate branch target address.
ALU $l+¢2 If register-to-register operation, the arithmetic or logical operation is
performed.
ALU] If a branch. decide whether the branch is to be taken or not.
If a memaory reference (load or store), calculate data vinal address.
ALU [If a memary reference. translate data vinual address to physical using
TLE.
MEM il If a memaory reference, send physical address to data cache.
MEM $2 If a memaory reference, return data from data cache, and check tags.
WhB il Write to register file.

Theoretical R3000 and Actual
R4000 Superpipelines |

Clock Cycle
, i , :
IC1 Ic2 RF ALU ALT Dl DC? TCl TC2 WhH
IC1 IC2 Pl AL ALU BCl DC2 TCl TC2 WhH

(a) Superpipelined implmentation of the optimized R3000 pipeline

Clock Cyele

ki .'-": 1 dafdy : b Ll ; s

1K I5 BF BEXx L= D TC WhH

¥ 15 RIF EA]y oS TC Wh
(b) R4000 pipeline

IF = Instruction fetch first half DC = Data cache
I5 = Instruction fetch second half DF = Data cache first half
RF = Fetch aperands from register DS = Datacache second half
EX = Instruction execule TC = Tag check
IC = Instruction cache WB = Write back to register file

Figure 15.11 Theoretical R3000 and Actual R4000 Superpipelines

R4000 Pipeline Stages

m Instruction fetch first half
m Virtual address is presented to the

m Instruction execute

instruction cache and the translation = One of three activities can occur:
lookaside buffer m If register-to-register operation
: ' : the ALU performs the operation
m Instruction fetch second half m If a load or store the data virtual
= Instruction cache outputs the address is calculated
instruction and the TLB generates the _ m If branch the branch target
physical address virtual address is calculated

| and branch operations checked
m Register file

= One of three activities can occur: - m Data cache first
m Instruction is decoded and check m Virtual address is presented to the
made for interlock conditions data cache and TLB
m Instruction cache tag checkis
made - m Data cache second

m Operands are fetched from the

register file m The TLB generates the physical

address and the data cache

: outputs the data
m Tag check

m Cache tag checks are performed for m Write back

load d st
oads and stores = Instruction result is written back

to register file

+
SPARC

Scalable Processor Architecture

m Architecture defined by Sun Microsystems

m Sun licenses the architecture to other vendors to produce
- SPARC-compatible machines ' |

0 Insp1red by the Berkeley RISC 1 machine, and its instruction
set and register organization is based closely on the
Berkeley RISC model

Physical Logical Registers

Rgglsmrs Procedure A Procedure B 3 Procedure C
135 R31,
E Ins ' Ins
128 K24,
127 R23,
E Locals : Laocals
120 RL6,
119 RI15, R3lg
Outs/Ins Outs . Ins
SPARC o iy
111 . R23g
Re gister Locals Locals
104 Rl6y
o 103 Rl5, R3l
vv lndow + Outs/Ins . Outs T Ins
96 , Rig , R4,
Layout
- Locals « Laocals
. 58 Riﬁ(_‘
vv]_th 87 RIS,
E Outs . . . Outs
Three d

Procedures . ; . >

L] L L] []
L L] L] L]
7 R7 R7 R7
+ (ilobals « (ilobals « (lohals « lobals
0 Ri) RO R

Figure 15.12 SPARC Register Window Layout with Three Procedures

Eight
Register
Windows
Forming a

Circular
Stack in
SPARC

locals '

Figure 15.13 Eight Register Windows Forming
: a Circular Stack in SPARC

O Description O Drescription

Load Store Instructions Arithmetic Instructions -

LID&H Load signed byie Al Audd
LID&H Lioad signed haliword ADPCT Add. set oo
LIDLH Load unsigned byie ADDX Add with carry
LIDUH Livad unsigned halfword ADDPXOCC Add with carry, set 1cc
LDy Loead word SLH Subtract
LI Load doublewaord SUBCC Subdract, set 1o SPA_RC
S5TH sStore byte sSUBX Subtract with carry
sSTH Store halbword SUBXCC Subtract with carry, set 1cc Instructio n
STD Store word MULSCC Multiply step, set e
ST Store doubleword Jump/Branch Instructions
Shift Instructions BLC Branch on condition Set

SLL Shuft left logical FBCC Branch on floatimg-poimt condition
SEL Shitt mght logical CBOCC Branch on coprocessor condition
SEA Shitt mght anthmeetic CALL Call procedure

Boolean Instructions JMPL Jump and link
AMD AMND TOC Trap on condition
ANDCT AMND, set oo SAVE Advance register window
AMNDN NAMD RESTORE Move windows backward
AMNDNOC NAMD. set we RETT Beturn from trap
O L] Miscellaneous Instructions
ORCE IR set dce SETHI Set high 22 bits
(I MNOE LINIME Unimplemented mnstructicn (trap)
L L MOE, set oo A B Bead a special register
NI MR WEH Write a special register
xRopeC MO set oo IFLUIsH Instruction cache flush
AINOIR Exclusive NOR

AMOROC Exclusive NOK, set wcc

Tahle 15.11 SPARC Instruction Set

Synthesizing Other Addressing Mod s
with SPARC Addressing Modes

Instruction Type Addressing Mode Algorithm SPARC Equivalent
Register-to-register Immediate operand = A 52
Load, store Direct EA=A R, + 52
Register-to-register Register EA=R K. . R
Load, store Register Indirect EA =(R) R, +0
Load, store Displacement EA=(R)+ A K. + 352

S2 = either a register operand or a 13-bit immediate operand

SPARC
Instruction
Formats

Call Format

Branch
Format

SETHI
Format

Floating-
Point -
Format

(zeneral
Formats

2 30

Op PC-relative displacement

2 1.4 - B £2 -

Opjal Cond | Op2 PC-relative displacement

2 3) 22

Op Dest | Op2 Immediate Constant

2 3 6 3 9 3

k-
L]
=
L]
=
3.
L]

Immediate Constant

Figure 15.14 SPARC Instruction Formats

v | | | |
RISC versus CISC Controversy

m Quantitative

- m Compare program sizes and execution speeds of programs on
RISC and CISC machines that use comparable technology

m Qualitative

= Examine issues of high level language support and use of VLSI
real estate : : : '

m Problems with comparisons:

m No pair of RISC and CISC machinés that are comjparable in life--
cycle cost, level of technology, gate complexity, sophistication of
compiler, operating system support, etc.

m No definitive set of test programs exists
- m Difficult to separate hardware effects from complier effects
m Most comparisons done on “toy” rather than commercial products

m Most commercial devices advertised as RISC possess a mixture of
RISC and CISC characteristics

