
+

SEN361 Computer Organization 

Prof. Dr. Hasan Hüseyin BALIK

(9th Week)



+

Outline

3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and 

Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar 

Processors



+ 

3.4 Reduced Instruction Set Computers (RISC)



+

3.4 Outline

 Instruction Execution Characteristics

 The Use of a Large Register File

 Compiler-Based Register Optimization

 Reduced Instruction Set Architecture 

 RISC Pipelining

 MIPS R4000

 Sparc

 RISC Versus CISC Controversy



Major advances since the birth of the 

computer

 The family concept

 Microprogrammed control unit

 Cache memory

 Pipelining

 Multiple processors

 Multiple processors

 Reduced instruction set computer (RISC) architecture



Characteristics of Some CISCs, RISCs, and 

Superscalar Processors

Characteristics of Some CISCs, RISCs, and Superscalar Processors



Instruction 

Execution 

Characteristics

High-level languages (HLLs)

•Allow the programmer to express algorithms more 
concisely

•Allow the compiler to take care of details that are not 
important in the programmer’s expression of 
algorithms

•Often support naturally the use of structured 
programming and/or object-oriented design

Semantic gap

•The difference between the 
operations provided in HLLs
and those provided in computer 
architecture

Operations performed

•Determine the functions to be 
performed by the processor and 
its interaction with memory

Operands used

•The types of operands and the 
frequency of their use determine 
the memory organization for 
storing them and the addressing 
modes for accessing them

Execution sequencing

•Determines the control and 
pipeline organization



Weighted Relative Dynamic Frequency 

of HLL Operations

Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]



Operands

Dynamic Percentage of Operands



Procedure Arguments and 

Local Scalar Variables

Procedure Arguments and Local Scalar Variables



+
Implications

 HLLs can best be supported by optimizing performance of 

the most time-consuming features of typical HLL programs

 Three elements characterize RISC architectures:

 Use a large number of registers or use a compiler to optimize 

register usage

 Careful attention needs to be paid to the design of instruction 

pipelines

 Instructions should have predictable costs and be consistent with 

a high-performance implementation



+
The Use of a Large Register File

 Requires compiler to allocate 

registers

 Allocates based on most used 

variables in a given time

 Requires sophisticated 

program analysis

 More registers

 Thus more variables will be in 

registers

Software Solution Hardware Solution



+
Overlapping Register Windows



Circular Buffer 

Organization of 

Overlapped 

Windows



+
Global Variables

 Variables declared as global in an HLL can be assigned memory 
locations by the compiler and all machine instructions that 
reference these variables will use memory reference operands

 However, for frequently accessed global variables this scheme is 
inefficient

 Alternative is to incorporate a set of global registers in the 
processor

 These registers would be fixed in number and available to all 
procedures

 A unified numbering scheme can be used to simplify the instruction 
format

 There is an increased hardware burden to accommodate the 
split in register addressing

 In addition, the linker must decide which global variables 
should be assigned to registers



Characteristics of Large-Register-File and 

Cache Organizations

Characteristics of Large-Register-File and Cache Organizations



+

Referencing a 

Scalar



Graph Coloring Approach



+
Why CISC ?

 There is a trend to richer instruction sets which include a 
larger and more complex number of instructions

 Two principal reasons for this trend:

 A desire to simplify compilers

 A desire to improve performance

 There are two advantages to smaller programs:

 The program takes up less memory

 Should improve performance

 Fewer instructions means fewer instruction bytes to be fetched

 In a paging environment smaller programs occupy fewer 
pages, reducing page faults

 More instructions fit in cache(s)

(Complex Instruction Set Computer)



Code Size Relative to RISC 1

Code Size Relative to RISC I



Characteristics of Reduced 

Instruction Set Architectures

• Machine cycle --- the time it takes to fetch two operands from 
registers, perform an ALU operation, and store the result in a 
register

One machine 
instruction per 
machine cycle

• Only simple LOAD and STORE operations accessing memory

• This simplifies the instruction set and therefore the control unit

Register-to-register 
operations

• Simplifies the instruction set and the control unit
Simple addressing 

modes

• Generally only one or a few formats are used

• Instruction length is fixed and aligned on word boundaries

• Opcode decoding and register operand accessing can occur 
simultaneously

Simple instruction 
formats



Comparison of Register-to-Register and 

Memory-to-Memory Approaches



Characteristics of Some Processors



The Effects of Pipelining



+
Optimization of Pipelining

 Delayed branch

 Does not take effect until after execution of following instruction

 This following instruction is the delay slot

 Delayed Load

 Register to be target is locked by processor

 Continue execution of instruction stream until register required

 Idle until load is complete

 Re-arranging instructions can allow useful work while loading

 Loop Unrolling

 Replicate body of loop a number of times

 Iterate loop fewer times

 Reduces loop overhead

 Increases instruction parallelism

 Improved register, data cache, or TLB locality



Normal and Delayed Branch



+

Use of the 

Delayed Branch



MIPS R4000

One of the first 
commercially available 

RISC chip sets was 
developed by MIPS 

Technology Inc.

Inspired by an 
experimental system 
developed at Stanford

Has substantially the 
same architecture and 
instruction set of the 
earlier MIPS designs 
(R2000 and R3000)

Uses 64 bits for all 
internal and external 

data paths and for 
addresses, registers, and 

the ALU

Is partitioned into two 
sections, one containing 
the CPU and the other 

containing a coprocessor 
for memory 

management

Supports thirty-two 64-
bit registers

Provides for up to 128 
Kbytes of high-speed 
cache, half each for 

instructions and data



MIPS 

R-Series 

Instruction 

Set



MIPS Instruction Formats



Enhancing the R3000 Pipeline



R3000 Pipeline Stages



Theoretical R3000 and Actual 

R4000 Superpipelines



R4000 Pipeline Stages

 Instruction fetch first half

 Virtual address is presented to the 
instruction cache and the translation 
lookaside buffer

 Instruction fetch second half

 Instruction cache outputs the 
instruction and the TLB generates the 
physical address

 Register file

 One of three activities can occur:

 Instruction is decoded and check 
made for interlock conditions

 Instruction cache tag check is 
made

 Operands are fetched from the 
register file

 Tag check

 Cache tag checks are performed for 
loads and stores

 Instruction execute

 One of three activities can occur:

 If register-to-register operation 
the ALU performs the operation

 If a load or store the data virtual 
address is calculated

 If branch the branch target 
virtual address is calculated 
and branch operations checked

 Data cache first

 Virtual address is presented to the 
data cache and TLB 

 Data cache second

 The TLB generates the physical 
address and the data cache 
outputs the data

 Write back

 Instruction result is written back 
to register file



+
SPARC

 Architecture defined by Sun Microsystems

 Sun licenses the architecture to other vendors to produce 

SPARC-compatible machines

 Inspired by the Berkeley RISC 1 machine, and its instruction 

set and register organization is based closely on the 

Berkeley RISC model

Scalable Processor Architecture



+

SPARC 

Register

Window 

Layout

With 

Three 

Procedures



+

Eight 

Register 

Windows 

Forming a 

Circular 

Stack in 

SPARC



SPARC 

Instruction 

Set



Synthesizing Other Addressing Modes 

with SPARC Addressing Modes

S2 = either a register operand or a 13-bit immediate operand



+

SPARC

Instruction

Formats



+
RISC versus CISC Controversy

 Quantitative

 Compare program sizes and execution speeds of programs on 
RISC and CISC machines that use comparable technology

 Qualitative

 Examine issues of high level language support and use of VLSI 
real estate

 Problems with comparisons:

 No pair of RISC and CISC machines that are comparable in life-
cycle cost, level of technology, gate complexity, sophistication of 
compiler, operating system support, etc.

 No definitive set of test programs exists

 Difficult to separate hardware effects from complier effects

 Most comparisons done on “toy” rather than commercial products

 Most commercial devices advertised as RISC possess a mixture of 
RISC and CISC characteristics


