
+

SEN361 Computer Organization

Prof. Dr. Hasan Hüseyin BALIK
(8th Week)

+

Outline
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and
Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar
Processors

+

3.3 Processor Structure and Function

+

3.3 Outline

 Processor Organization

 Register Organization

 Instruction Cycle

 Instruction Pipelining

 The x86 Processor Family

 The Arm Processor

+
Processor Organization

 Fetch instruction
 The processor reads an instruction from memory (register, cache, main memory)

 Interpret instruction
 The instruction is decoded to determine what action is required

 Fetch data
 The execution of an instruction may require reading data from memory or an I/O

module

 Process data
 The execution of an instruction may require performing some arithmetic or logical

operation on data

 Write data
 The results of an execution may require writing data to memory or an I/O module

 In order to do these things the processor needs to store some data
temporarily and therefore needs a small internal memory

Processor Requirements:

CPU With the System Bus

CPU Internal Structure

+
Register Organization

 Enable the machine or
assembly language
programmer to minimize main
memory references by
optimizing use of registers

 Used by the control unit to
control the operation of the
processor and by privileged
operating system programs to
control the execution of
programs

User-Visible Registers Control and Status Registers

 Within the processor there is a set of registers that function as a
level of memory above main memory and cache in the
hierarchy

 The registers in the processor perform two roles:

User-Visible Registers

Referenced by means of
the machine language

that the processor
executes

• General purpose
• Can be assigned to a variety of functions by

the programmer
• Data
• May be used only to hold data and cannot

be employed in the calculation of an
operand address

• Address
• May be somewhat general purpose or may

be devoted to a particular addressing mode
• Examples: segment pointers, index

registers, stack pointer
• Condition codes
• Also referred to as flags
• Bits set by the processor hardware as the

result of operations

Categories:

Condition Codes

+
Control and Status Registers

 Program counter (PC)
 Contains the address of an instruction to be fetched

 Instruction register (IR)
 Contains the instruction most recently fetched

 Memory address register (MAR)
 Contains the address of a location in memory

 Memory buffer register (MBR)
 Contains a word of data to be written to memory or the word most

recently read

Four registers are essential to instruction execution:

+
Program Status Word (PSW)

Register or set of registers that
contain status information

Common fields or flags include:
• Sign
• Zero
• Carry
• Equal
• Overflow
• Interrupt Enable/Disable
• Supervisor

Example
Microprocessor

Register
Organizations

Instruction
Cycle

Includes the following
stages:

Fetch

Read the next
instruction from
memory into the

processor

Execute

Interpret the opcode
and perform the

indicated operation

Interrupt

If interrupts are
enabled and an

interrupt has occurred,
save the current

process state and
service the interrupt

Instruction Cycle

Instruction Cycle State Diagram

Data Flow, Fetch Cycle

Data Flow, Indirect Cycle

Data Flow, Interrupt Cycle

Pipelining Strategy

Similar to the use of
an assembly line in a
manufacturing plant

New inputs are
accepted at one end

before previously
accepted inputs

appear as outputs at
the other end

To apply this concept
to instruction

execution we must
recognize that an
instruction has a
number of stages

Two-Stage Instruction Pipeline

+
Additional Stages

 Fetch instruction (FI)

 Read the next expected
instruction into a buffer

 Decode instruction (DI)

 Determine the opcode and
the operand specifiers

 Calculate operands (CO)

 Calculate the effective
address of each source
operand

 This may involve
displacement, register
indirect, indirect, or other
forms of address calculation

 Fetch operands (FO)

 Fetch each operand from
memory

 Operands in registers need
not be fetched

 Execute instruction (EI)

 Perform the indicated
operation and store the
result, if any, in the specified
destination operand location

 Write operand (WO)

 Store the result in memory

Timing Diagram for Instruction
Pipeline Operation

The Effect of a Conditional Branch
on Instruction Pipeline Operation

+

Six Stage
Instruction Pipeline

+

Alternative Pipeline
Depiction

+

Speedup Factors
with Instruction
Pipelining

Pipeline Hazards

Occur when the
pipeline, or some

portion of the
pipeline, must stall
because conditions

do not permit
continued execution

Also referred to as a
pipeline bubble

There are three
types of hazards:
• Resource
• Data
• Control

+
Resource
Hazards

A resource hazard occurs when two
or more instructions that are already
in the pipeline need the same
resource

The result is that the instructions must
be executed in serial rather than
parallel for a portion of the pipeline

A resource hazard is sometimes
referred to as a structural hazard

+
Data Hazards
A data hazard occurs when there is a conflict in the
access of an operand location

RAW

Hazard

+
Types of Data Hazard

 Read after write (RAW), or true dependency
 An instruction modifies a register or memory location
 Succeeding instruction reads data in memory or register location
 Hazard occurs if the read takes place before write operation is

complete

 Write after read (WAR), or antidependency
 An instruction reads a register or memory location
 Succeeding instruction writes to the location
 Hazard occurs if the write operation completes before the read

operation takes place

 Write after write (WAW), or output dependency
 Two instructions both write to the same location
 Hazard occurs if the write operations take place in the reverse order

of the intended sequence

+
Control Hazard

 Also known as a branch hazard

 Occurs when the pipeline makes the wrong decision on a
branch prediction

 Brings instructions into the pipeline that must subsequently
be discarded

 Dealing with Branches:
 Multiple streams
 Prefetch branch target
 Loop buffer
 Branch prediction
 Delayed branch

Multiple Streams

A simple pipeline suffers a penalty for a
branch instruction because it must choose
one of two instructions to fetch next and may
make the wrong choice

A brute-force approach is to replicate the
initial portions of the pipeline and allow the
pipeline to fetch both instructions, making
use of two streams

Drawbacks:
• With multiple pipelines there are contention delays

for access to the registers and to memory
• Additional branch instructions may enter the pipeline

before the original branch decision is resolved

+

Prefetch Branch Target

 When a conditional branch is recognized, the
target of the branch is prefetched, in addition
to the instruction following the branch

 Target is then saved until the branch
instruction is executed

 If the branch is taken, the target has already
been prefetched

 IBM 360/91 uses this approach

+
Loop Buffer

 Small, very-high speed memory maintained by the
instruction fetch stage of the pipeline and containing the n
most recently fetched instructions, in sequence

 Benefits:
 Instructions fetched in sequence will be available without the

usual memory access time
 If a branch occurs to a target just a few locations ahead of the

address of the branch instruction, the target will already be in the
buffer

 This strategy is particularly well suited to dealing with loops

 Similar in principle to a cache dedicated to instructions
 Differences:
 The loop buffer only retains instructions in sequence
 Is much smaller in size and hence lower in cost

Loop Buffer

+
Branch Prediction

 Various techniques can be used to predict whether a branch
will be taken:

1. Predict never taken

2. Predict always taken

3. Predict by opcode

1. Taken/not taken switch

2. Branch history table

 These approaches are static

 They do not depend on the
execution history up to the time of
the conditional branch instruction

 These approaches are dynamic

 They depend on the execution history

+

Branch Prediction
Flow Chart

Branch Prediction State Diagram

+

Dealing With
Branches

+
Intel 80486 Pipelining

 Fetch
 Objective is to fill the prefetch buffers with new data as soon as the old data

have been consumed by the instruction decoder
 Operates independently of the other stages to keep the prefetch buffers full

 Decode stage 1
 All opcode and addressing-mode information is decoded in the D1 stage
 3 bytes of instruction are passed to the D1 stage from the prefetch buffers
 D1 decoder can then direct the D2 stage to capture the rest of the instruction

 Decode stage 2
 Expands each opcode into control signals for the ALU
 Also controls the computation of the more complex addressing modes

 Execute
 Stage includes ALU operations, cache access, and register update

 Write back
 Updates registers and status flags modified during the preceding execute

stage

+

80486
Instruction

Pipeline
Examples

x86 Processor Registers

x86 Processor Registers

x86 EFLAGS Register

Control
Registers

Mapping of MMX Registers to
Floating-Point Registers

+
Interrupt Processing

 Interrupts
 Generated by a signal from hardware and it may occur at random

times during the execution of a program
 Maskable
 Nonmaskable

 Exceptions
 Generated from software and is provoked by the execution of an

instruction
 Processor detected
 Programmed

 Interrupt vector table
 Every type of interrupt is assigned a number
 Number is used to index into the interrupt vector table

Interrupts and Exceptions

x86 Exception and Interrupt Vector Table

Unshaded: exceptions Shaded: interrupts

+
The ARM Processor

 Moderate array of uniform registers

 A load/store model of data processing in which operations only perform
on operands in registers and not directly in memory

 A uniform fixed-length instruction of 32 bits for the standard set and 16
bits for the Thumb instruction set

 Separate arithmetic logic unit (ALU) and shifter units

 A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

 Auto-increment and auto-decrement addressing modes are used to
improve the operation of program loops

 Conditional execution of instructions minimizes the need for conditional
branch instructions, thereby improving pipeline efficiency, because
pipeline flushing is reduced

ARM is primarily a RISC system with the following
attributes:

+

Simplified ARM
Organization

Processor Modes

ARM
architecture

supports seven
execution

modes

Most application
programs execute in
user mode
• While the processor is in

user mode the program
being executed is unable
to access protected
system resources or to
change mode, other than
by causing an exception
to occur

Remaining six
execution modes
are referred to as
privileged modes
• These modes are

used to run system
software

Advantages to defining
so many different
privileged modes
•The OS can tailor the use of
system software to a variety
of circumstances
•Certain registers are
dedicated for use for each of
the privileged modes, allows
swifter changes in context

Exception Modes

Have full access
to system

resources and
can change

modes freely

Entered when
specific

exceptions occur

Exception
modes:
• Supervisor mode
• Abort mode
• Undefined mode
• Fast interrupt mode
• Interrupt mode

System mode:
• Not entered by any

exception and uses the
same registers available
in User mode

• Is used for running
certain privileged
operating system tasks

• May be interrupted by
any of the five exception
categories

ARM

Register
Organization

Format of ARM CPSR and SPSR

ARM

Interrupt
Vector

	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(8th Week)
	Outline
	Slide Number 3
	3.3 Outline
	Processor Organization
	CPU With the System Bus
	CPU Internal Structure
	Register Organization
	User-Visible Registers
	�Condition Codes
	Control and Status Registers
	Program Status Word (PSW)
	Slide Number 13
	Instruction Cycle
	Instruction Cycle
	Instruction Cycle State Diagram
	Data Flow, Fetch Cycle
	Data Flow, Indirect Cycle
	Data Flow, Interrupt Cycle
	Pipelining Strategy
	Two-Stage Instruction Pipeline
	Additional Stages
	Timing Diagram for Instruction Pipeline Operation
	The Effect of a Conditional Branch on Instruction Pipeline Operation
	Six Stage �Instruction Pipeline
	Alternative Pipeline Depiction
	Speedup Factors�with Instruction�Pipelining
	Pipeline Hazards
	Resource �Hazards
	Data Hazards
	Types of Data Hazard
	Control Hazard
	Multiple Streams
	Prefetch Branch Target
	Loop Buffer
	Loop Buffer
	Branch Prediction
	Branch Prediction Flow Chart
	Branch Prediction State Diagram
	Dealing With �Branches
	Intel 80486 Pipelining
	80486 �Instruction �Pipeline �Examples
	�x86 Processor Registers
	�x86 Processor Registers
	x86 EFLAGS Register
	Control �Registers
	Mapping of MMX Registers to �Floating-Point Registers
	Interrupt Processing
	�x86 Exception and Interrupt Vector Table
	The ARM Processor
	Simplified ARM Organization
	Processor Modes
	Exception Modes
	�ARM �Register �Organization
	Format of ARM CPSR and SPSR
	�ARM�Interrupt �Vector

