SEN361 Computer Organization

Prof. Dr. Hasan Hiiseyin BALIK
(8" Week)

o

Outline |
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Ir.lstruction.Sets: ,Add.ressing Modes, and
Formats

3.3 Processor Structure and Function
3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar
Processors | | |

3.3 Processor Structure and Function

3.3 Outline

O Proéessor Organizatioh

m Register Organization

m Instruction Cycle

m Instruction Pipelining -

m The x86 Processor Family

N The_ Arm Processor

+
Processor Organization

Processor Requirements:

m Fetch instruction
m The processor reads an instruction from memory (register, cache, main memory)

m Interpret instruction
m The instruction is decoded to determine what action is required

m Fetch data

m The execution of an instruction may require reading data from memory or an I/O
module

m Process data

m The execution of an instruction may require performing some arithmetic or logical
operation on data

m Write data
m The results of an execution may require writing data to memory or an I/O module

m In order to do these things the processor needs to store some data
temporarily and therefore needs a small internal memory

CPU With the System Bus

Registers

ALU

Control
Uit

" Control Data Address

Bus . Bus Bus
e e
System
Bus

Figure 14.1 The CPU with the System Bus

CPU Internal Structure

Arithmetic and Logic Unit 4P
4P| StatusFlags |fl——t—=p * .
Registers
]
< Shifter | > .
i []
H Complementer "‘ " A: H
S
z

Arithmetic

H and ———
Boolean ‘ b‘
Logic
Control
Unit
Control

Paths

Figure 14.2 Internal Structure of the CPU

Register Organization

- m Within the processor there is a set of registers that function as a
level of memory above main memory and cache in the
hierarchy ; ; ;

m The registers in the processor perform two roles:

User-Visible Registers

m Enable the machine or m Used by the control unit to -
assembly language control the operation of the
programmer to minimize main processor and by privileged
memory references by - operating system programs to

- optimizing use of registers control the execution of

programs

User-Visible Registers

/

\

Referenced by means of
the machine language
that the processor
executes

d Categories:

* General purpose

* Can be assigned to a variety of functions by
the programmer

e Data

* May be used only to hold data and cannot
be employed in the calculation of an
operand address

e Address

* May be somewhat general purpose or may
be devoted to a particular addressing mode

« Examples: segment pointers, index
registers, stack pointer

* Condition codes
* Also referred to as flags
* Bits set by the processor hardware as the

kresult of operations /

Condition Codes

Advantages

Disadvantages

Because condition codes are set by normal
arithmetic and data movement instructions,
they should reduce the number of
COMPARE and TEST instructions needed.

. Conditional instmactions, such as BRANCH

ire simplified relative to composite
instructions, such as TEST AND
BRANCH.

. Condition codes facilitate multiway
branches. For example, a TEST instruction
can be followed by two branches, one on
less than or equal to zero and one on
greater than zero.

. Condition codes can be saved on the stack

during subrouting calls along with other
register information.

Condition codes add complexity, both to
the hardware and software. Condition code
bits are often modified in different ways
by different instructions, making life more
difficult for both the microprogrammer
and compiler writer.

Condition codes are immegular:; they are
typically not part of the main data path, so
they require extra hardware connections.
Crften condition code machines must add
special non-condition-code instructions for
special sitations anyway, such as hit
checking, loop control, and atomic
semaphore operations.

In a pipelined implementation, condition
codes require special synchronization to
avold conflicts.

. | | |
Control and Status Registers

Four registers are essential to instruction execution:

m Program counter (PC)

m Contains the address of an instruction to be fetched

m Instruction register (IR)

. m Contains the instruction most recently fetched

N Membry address régister (MAR)

m Contains the address of a location in memory

m Memory buffer register (MBR)

m Contains a word of data to be written to memory or the word most
recently read

T | | |
Program Status Word (PSW)

Register or set of registers that
contain status information

Common fields or flags include:

« Sign

» Zero

* Carry

* Equal

* Overflow

* Interrupt Enable/Disable
* Supervisor

D1
D2
D3

SERE

Al
Al
A2
Ad

Ab

AT

Data registers General registers

BX

sSP

BP

|

Address registers DI

CS

DS

55

ES

Program status

Program counter

| Status register

(a) MC6S000

AX

Accumulator

Base

CX

Count

DX

Irata

Pointers & index

Stack ptr

Kase pir

Source index

Dest index

Segment

Code

Data

Stack

Extrat

Program status

Flags

Instr ptr

(b) 5086

EAX
EBX
ECX
EDX

ESP
EBP
ESI

EDI

(General Registers -

AX

BX

CX

DX

SP

BP

S1

DI

Program Status

FLAGS Register

Instruction Pointer

(c) 80386 - Pentium 4

Example
Microprocessor
- Regqister
Organizations

Figure 14.3 Example Microprocessor Register Organizations

Includes the following
stages:

Instruction
Cycle

Read the next
instruction from
memory into the
processor

Execute

Interpret the opcode
and perform the
indicated operation

Interrupt

If interrupts are
enabled and an
interrupt has occurred,
save the current
process state and
service the interrupt

./

Instruction Cycle

Interrupt Indirect

Figure 14.4 The Instruction Cycle

[
Instruction Cycle State Diagram

Indirection Indirection

Instruction U:-:D Operand
fetch fetch store

Multiple Multiple

operands results
Instruction Instruction Operand Data Operand
address operation = address M oecati — address Interrupt — [nter rupt
calculation decoding calculation P A calculation theck

Instruction z::nmp]e.te- Return for string inferrupt
fetcth next instruction. or vector data : :

Figure 14.5 Instruction Cycle State Diagram

Data Flow, Fetch Cycle

CPU

K— Memory
Control ::>, _

Unit

IR K——MBR

Address Data Control

Bus Bus Bus
MBR = Memory buffer register
MAR = Memory address register

IR = Instruction register
PC = Program counter

Figure 14.6 Data Flow, Fetch Cycle

Data Flow, Indirect Cycle

CPU

S MAR | -

vallv;

Memory

-
Control ' :l|>_

Unit

MBR

Address Data Control
Bus Bus Bus

Figure 14.7 Data Flow, Indirect Cycle

Data Flow, Interrupt Cycle

CPU : | .

PC MAR | ;
ﬁ 3:3 Memory
Control — :

Unit |
| MBR —

Address Data Control
| Bus Bus _Bus

Figure 14.8 Data Flow, Interrupt Cycle

Pipelining Strateg‘y'

To apply this concept
to instruction
execution we must
Similar to the use of . recognize that an .
an assembly line in a instruction has a
manufacturing plant number of stages

New inputs are
accepted at one end
before previously
accepted inputs
appear as outputs at

the other end

Two-Stage Instruction Pipeline

Instruction Instruction Result
Fetch » Execute

(a) Simplified view

Wait MNew addresg Wait

Instruction Result

Execute

Instruction
Fetch b '

!

Discard

(b) Expanded view

Figure 14.9 Two-Stage Instruction Pipeline

. | |
Additional Stages

m Fetch instruction (FI)

= Read the next expected m Fetch operands (FO)

instruction into a buffer - m Fetch each operand from
memory
= Decode instruction (DI) m Operands in registers need
m Determine the opcode and not be fetched

the operand specifiers | |
m Execute instruction (EI)

m Calculate operands (CO) m Perform the indicated
m Calculate the effective operation and store the
address of each source : result, if any, in the specified
operand | destination operand location

Thi ' 1
e e b m Write operand (WO)
displacement, register

indirect, indirect, or other = Store the result in memory
forms of address calculation

Timing Diagram for Instruction
Pipeline Operation

Time .

1121314567189 (|10111}12|13]14
Instruction 1 | 1 | p1 | co | Fo | EI [WoO
Instruction 2 | FI | DI | cO | FO | EI | WO
Instruction 3 | FI | DI | CO| FO | EI | WO
Instruction 4 | FI | DI | CO| FO | EI |WO
Instruction 5 FI | b1 |co|Fo | EI |wo
Instruction 6; FI | DI | CO| FO | EI | WO
Instruction 7 F1 | b1 | co|Fo| 1 [wo
Instruction 8 F1 | pI | co| Fo | EI [wo
Instruction 9 | FI | DI | CO| FO | EI | WO

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

The Effect of a Conditional Branch

on Instruction Pipeline Operation

Instruction 1

Instruction 2 |
Instruction 3

Instruction 4 |

Instruction 5

Instruction 6 |

Instruction 7

Instruction 15 ¢

Instruction 16

Time > < Branch Penalty >
1121345167 |89 (10111213 }14
FI | DI | CO | FO | EI | WO

FI | DI | CO | FO | EI | WO
FI | DI | CO| FO | EI | WO
FI | DI | CO | FO
FI | DI | CO
FI | DI
FI
FI | DI | CO | FO | EI | WO
FI | DI | CO | FO | EI | WO

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

S1X Stage

Instruction Pipeline

Fetch

FI

DI

co

Yes

El

FO

Instruction

Decode
Instruction

Calculate
Operands

Uncon-
ditional
Branch?

Fetch
Operands

Execute
Instruction

Write

Operands

Figure 14.12 Six-Stage Instruction Pipeline

FI |DI |CO|{FO|EI |[WO FI |DI |CO|FO|EI |[WO

1 |(n 1 |1
2 |e2|n 2 |e2|n
3 |B|(e|n 3 |B|le|n
4 4| |e|n 4 4| |e|n
5 |5l |B|r|n s (s|u|B|e|n|
J 6 (8|5 kB2 6 ||| |B|n2|n
. . . El 7 [wlw|s|u|e]e 7 || |5 |B|e
Alternative Pipeline o [[r|5[ns T 5
Depiction $o (9|8 |m|6|is|s 9 116|115
10| |(w|s|[17]|16]15 10 116 115
11 w|s|17]16 11 116 115
12 |87 12 116|115
13 | 19 | 18 13 116 | 115
14 19 14 116

ia) Mo branches ib) With conditional branch

Figure 14.13 An Alternative Pipeline Depiction

12
+ 10 = k=12 stages
E i k=19 stages
2 0= ——
';I s i = b stages
w i
Speedup Factors L
. . 1 2z 4] 16 31 i 128
Wlth IIlStI"llCthn Mumber of instructions (log scale)
. o« . (a)
Pipelining
14
12 —

g n = 2 instructions

it = 1) instructions

Speedup factor
=
|

4=
2 -
5 |
0 5 ' 10 15 20
Number of stages
(b}

Figure 14.14 Speedup Factors with Instruction Pipelining

Pipeline Hazards .

Occur when the
pipeline, or some

portion of the There are three
pipeline, must stall types of hazards:
because conditions - Resotirce
do not permit Aty
continued execution » Control

® @

Also referred to as a
pipeline bubble

|\
-0

B
=

- Clock cycle
| e e N e e T e e

I1| g1 | o1 | FO| EI [WO
£ L2 FI | DI | FO | EI [WO
Resource E
| B I3 FI | DI | FO | EI [WO
Hazards |
14 F1 | 1 | FO | EI | WO
(a) Five-stage pipeline, ideal case
A resource hazard occurs when two Clock cycle
or more instructions that are already _ | i i R T e T e Tl
in the pipeline need the same
resource I1| g1 | o1 | FO | E1 [WO
0 V)
The result is that the instructions must g FI | DI | FO | EI | WO
be executed in serial rather than JE I3 1diel 71 | o1 | 7o | E1 | wo
parallel for a portion of the pipeline -
14 FI | DI | FO | EI |WO
A resource hazard is sometimes
referred to as a structural hazard (T Aduires iiceand fn Mty

Figure 14.15 Example of Resource Hazard

E]unkcynie
| BNl A Rl SRS B TR S RO B |

ADD EAX,EBX | F1 | DI | FO | EI | WO

SUB ECX, EAX F1 | DI Idle FO | EI | WO
I3 FI p1 | FO | EI | WO
14 FI1 | b1 | FO | EI | WO

Figure 14.16 Example of Data Hazard

7
Data Hazards

A data hazard occurs when there is a conflict in the
access of an operand location

Types of Data Hazard

m Read after write (RAW), or true dependency
m An instruction modifies a register or memory location
m Succeeding instruction reads data in memory or register location

m Hazard occurs if the read takes place before write operation is
complete

m Write after read (WAR), or antidependency
m An instruction reads a register or memory location .
m Succeeding instruction writes to the location

m Hazard occurs if the write operation completes before the read
operation takes place

m Write after write (WAW), or output dependency
m Two instructions both write to the same location

m Hazard occurs if the write operations take place in the reverse order
of the intended sequence

Control Hazard

m Also known as a branch hazard

m Occurs when the pipeline makes the wrong decision on a
branch prediction

m Brings instructions into the pipeline that must subsequently
be discarded

m Dealing with Branches:
m Multiple streams -

. m Prefetch branch target
m Loop buffer :
m Branch prediction
m Delayed branch

Multipl'e Streams

A simple pipeline suffers a penalty for a
branch instruction because it must choose
one of two instructions to fetch next and may
make the wrong choice

| A brute-force approach is to replicate the
| initial portions of the pipeline and allow the

pipeline to fetch both instructions, making
use of two streams

//

Drawbacks:

« With multiple pipelines there are contention delays
for access to the registers and to memory

« Additional branch instructions may enter the pipeline
before the original branch decision is resolved

Prefetch Branch Target

m When a conditional branch is recognized, the
target of the branch is prefetched, in addition
- to the instruction following the branch.

m Target is then saved until the branch
instruction is executed

m If the branch is taken, the target has already
been prefetched

m IBM 360/91 uses this approach

i Loop Buffer

m Small, very-high speed memory maintained by the
instruction fetch stage of the p1pe11ne and containing the n
most recently fetched instructions, in sequence

m Benefits:

= Instructions fetched in sequence will be available without the
usual memory access time

m If a branch occurs to a target just a few locations.ahead of the
address of the branch instruction, the target will already be in the
buffer

m This strategy is particularly well suited to dealing with loops

m Similar in principle to a cache dedicated to instructions
m Differences: : :
m The loop buffer only retains instructions in sequence
m Is much smaller in size and hence lower in cost

Branch address LOOp Buffer

Instruction to be
Loop Buffer decoded in case of hit

(256 bytes) g

Most significant address bits
compared to determine a hit

Figure 14.17 Loop Buffer

+

Branch Prediction

m Various techniques can be used to predict whether a branch

will be taken:

——

L Prédict never takén
- 2. Predict alWays taken
3. Predict by opcode

=

m These approaches are static

m They do not depend on the
execution history up to the time of

—

the conditional branch instruction

1. Taken/not taken switch

- 2. Branch history table

m These approaches are dynamic

m They depend on the execution history

Branch Prediction
Flow Chart

Read next
conditional
branch instr

1

Predict taken

Branch
taken?

Read next
conditional
branch instr

Y

Predict taken

Read next
| conditional

branch instr

1

Predict not taken

Branch
taken?

Read next
conditional
branch instr

¥ .
Predict not taken

Figure 14.18 Branch Prediction Flow Chart

Branch Prediction State Diagram

Not Taken

Takﬁn Predict > Predict
Taken << Taken
Tak_en
A
E
oz
= | S
g
= =
=~ Z,
Y
Not Taken
Predict P predict Not Taken
Not Taken < Not Taken
Taken

Figure 14.19 Branch Prediction State Diagram

Mext sequential

address
z
7 Memaory
E 5| Branch Miss
) Handling
(a) Predict never taken sirategy
Mext sequential
v address
. . IPFAR | Branch
D 1 ‘ " ’ th . instruction. Target »
e a lng 1 address address State ‘;
Lookup = = -
B h | 4 Ve
rancies i

_-idd new IPFAR = instruction
SR - - . prefix address register
4 -
* - L] .
Update

state

Branch Miss

| * Handling
E

ib) Branch history table strategy

Redirect

Figure 14.20 Dealing with Branches

. | |
Intel 80486 Pipelining

m Fetch

m Objective is to {fill the prefetch buffers with new data as soon as the'old data
have been consumed by the instruction decoder

= Operates independently of the other stages to keep the prefetch buffers full

m Decode stage 1
m All opcode and addressing-mode information is decoded in the D1 stage
m 3 bytes of instruction are passed to the D1 stage from the prefetch buffers
= DI decoder can then direct the D2 stage to captuire the rest of the instruction

m Decode stage 2
m Expands each opcode into control signals for the ALU
m Also controls the computation of the more complex addressing modes

m Execute
m Stage includes ALU operations, cache access, and register update

m Write back

m Updates registers and status flags modified during the preceding execute

Feteh | D1 | D2 | EX | WB MOV Regl, Mem1
: Feteh | DI | D2 | EX | WB MOV Regl, Reg2
Fetch | DI | D2 | EX | WB | MOV Mem2, Regl

{a) No Data Load Delay in the Pipeline

80486

IIlStI'llCtiOIl Fetch | DI D2 | EX | WB MOV Regl, Meml
Plp eline Fetch | DI D2 EX MOV Reg2, (Regl)
Exa.mp].es . (b) Pointer Load Dela}f

Fetch | D1 D2 EX WB : CMP Regl, Imm
Fetch | DI D2 EX Jee Target
Fetch | D1 D2 EX | Target

{¢) Branch Instruction Timing

Figure 14.21 80486 Instruction Pipeline Examples

%86 Processor 'Registe'rs

Type Number Length ihits) Purpose
General B 32 General-purpose user registers
Segment 5] 16 Contain segment selectors
EFLAGS | il Status and control bits
Instruction Pointer | 32 Instmiction pointer

(a) Integer Unit in 32-bit Mode

Type Number Length ihits) Purpose
General 16 32 General-purpose user registers
Segment 5] 16 Contain segment selectors
RFLAGS | HE Status and control bits
Instruction Pointer | 04 Instmiction pointer

(b) Integer Un.ﬁ in 64-hit Mode

%86 Processor -Registe-rs

Tvpe Number Length (hits) Purpose

Numeric 8 Wl Hold floating-point numbers

Control] G Control bits

Status] 16 Status bits

Tag Word] 1G Specifies contents of numeric
registers

Instruction Pointer] 48 Points to Instruction interrupted
by exception

Data Pointer] 48 Points to operand intermapted by

exception

(c) Floating-Foint Unit

x86 EFLAGS Register

21 16 /15

: N IO [OD|II|T|S|Z A
D|p|fp|C|MF T|PL |E|(F F|F|F F

-

Nl)

1D
VIF
VIF
AC
VM
RF

IOFL
OF

DF = Direction flag
IF = Interrupt enable flag

Identification flag
Virtual interrupt pending

Virtual interrupt flag . TF .= Trap tlag
Alignment check S5F = 5ign flag

Virtual 8086 mode ZF = Zero flag

Resume flag AF = Auxiliary carry flag
Nested task flag ' PF = Parity flag '
I/O privilege level CF = Carry flag

Overtlow flag

Figure 14.22 x86 EFLAGS Register

: DSNSAVE OSXMMEXCPT—; OSFXSR : : -
&3]
:&‘31?1515141312:\n%—?55 3.2 1-0

31 3029 28 27 26 25 24 23 22 21 20 4 2

SV ; v

nilng PPN PP D T|P]

ol x FGE,‘ASEh\'!'r_‘[CR4

ElE E|JE|E|E|E DI |E
PP

Page-Directory Base CW CR3

o|T {PFDEE)

E‘ug-:-]-‘u.u.]t].in-::lrhddrcsﬁ . . CH2 | ContrOI]
~ - Registers

3N WX BP M3 WMISIBEITI615141312 11109 B 7.6 5 4 3 2 1 0O

FL"'P-‘-I A W NIE|IT|EMIE CRO
G D Wy M P E|{T|S|MJFP|E
shaded area indicates reserved bits
OSXSAVE = XSAYE enahle bit : FCD = Page-level Cache Disable
SMXE = Enable Safer mode extensions PWT = Page-level Writes Transparent
VMXE = Enable vinual maching extensions PG = Paging
OSXMMEMNCFT = Support unmasked 5IMD FP exceptions €D = Cache Disable
O5FXSR = Support FXSAVE. FX5TOR NW = DNot Write Through
PCE = FPerformance Counter Enable AM = Alignment Mask
PGE = Page (lobal Enable WP = Write Protect
MCE = Machine Check Enable NE = Numerc Emor
PAE = Physical Address Extension “ET ° = Extension Type
PSE = Fage Size Exiensions T8 .= Task Switched
DE = Debug Extensions . EM = Emulation
T5D = Time Stamp Disable MF = DBonitor Coprocessor
PV1 = Protected Mode Virtual Interrupt PE = Protection Enable
WME = Virtual 8080 Mode Extensions

Figure 14.23 x86 Control Registers

Mapping of MMX Registers to
Floating-Point Registers

Floating-Point . :
Tag Floating-Point Registers

‘4'-: ﬁ 5
S
-
#
*

MM?7
MM6
MM
MM4
MM3
MM2
MM1
MMO

MMX Registers

Figure 14.24 Mapping of MMX Registers to Floating-Point Registers

. |
Interrupt Processing

Interrupts and Exceptions

m Interrupts

m Generated by a signal from hardware and it may occur at random
times during the execution of a program

m Maskable
= Nonmaskable

m Exceptions

m Generated from software and is provoked by the execution of an
instruction

m Processor detected
. m Programmed

m Interrupt vector table
m Every type of interrupt is assigned a number
= Number is used to index into the interrupt vector table

%86 Exceptidn and _Interrupt Vector Table

Yector Number

Description
] Divide error; division overflow or division by zero
1 Debug exception; inclodes various faults and traps related to debugging
2 NMI pin interrupt; signal on NMI pin '
3 Breakpoint: caused by INT 3 instruction, which is a |-byte instruction useful for debugging
4 [NTO-detected overflow; occurs when the processor executes INTO with the OF flag set
5 BOLUND Iungi: exceeded; the BOUND instruction COIMpAres a Ic'gist:r with houndaries stored in
memory and generates an interrupt if the contents of the register 1s out of bounds.
i Undefined opcodse
b Device not available; attempt to use ESC or WAIT instruction fails due to lack of external device
b Drouble fault: two interrupts accur during the same instruction and cannoet be handled serially
9 Reserved
10 [nwalid task state segment: segment descnbing a requested task is not mitialized or not valid
Il Sepment not present; required segment not present
Iz Stack fault; limit of stack segment exceeded or stack segment not present
13 Creneral protection; protection vielation that does not cause another excepiion {e.g., writing te a
read-only segment) :
14 Page fault
15 Reserved
16 Floating-point error; generated by a floating-point arithmetic instruction
17 Alignment check: access to a word stored at an odd byte address or a doubleword stored at an
address not a multiple of 4
.4 Machine check; model specific
-3] Reserved
321-255 User interrupt vectors; provided when INTR signal 1s activated

Unshéded: exceptions

Shaded: interrupts

o | |
The ARM Processor
ARM is primarily a RISC system with the following
attributes:

m Moderate array of uniform registers

m A load/store model of data processing in which operations only perform
on operands in registers and not directly in memory .

m A uniform fixed-length instruction of 32 bits for the standard set and 16
bits for the Thumb instruction set

m Separate arithmetic logic unit (ALU) and shifter units

m A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

m Auto-increment and auto-decrement addressing modes are used to
improve the operation of program loops

m Conditional execution of instructions minimizes the need for conditional
branch instructions, thereby improving pipeline efficiency, because .
pipeline flushing is reduced

External memory {cache, main memory)

yn

-——-h-l Memory address register [-(-—- | Memory buffer register I—
l A

Sign
RI15 (PC) e INCTEMENLET |

extend

!

Rd
—- User Register File (Ril - R15)

Simplified ARM

R R Ace
Organization - - - I

I Instruction register I

!

Instruction |
decoder

)

Contral
unit

|

]

NMultiply/
accumulate

Figure 14.25 Simplified ARM Organization

' 'ProceSSor Mddes

ARM
architecture
supports seven
execution
modes

>

" Most application

programs execute in
user mode

» While the processor is in
user mode the program
being executed is unable
to access protected
System reSources or to
change mode, other than
by causing an exception

to occur

I Remaining six
execution modes
are referred to as
privileged modes

» These modes are
used to run system
software

I Advantages to defining

so many different
privileged modes

*The OS can tailor the use of
system software to a variety
of circumstances

Certain registers are
dedicated for use for each of
the privileged modes, allows
swifter changes in context

Have full access
to system
resources and
can change
modes freely

Entered when
specific
exceptions occur

" Exception
modes:

* Supervisor mode
Abort mode
Undefined mode
Fast interrupt mode
Interrupt mode

' System mode:

* Not entered by any
exception and uses the
same registers available
in User mode

* Is used for running
certain privileged
operating system tasks

* May be interrupted by
any of the five exception

categories

Modes

Privileged modes

Exception modes

LUser System Supervisor Abort Undefined | Interrupt Fast
Interrupt

RO RO RO R0} RO R0 RO

Rl RI R1 RI R1 R1 RI

_RZ R2 R2 R2 R2 R2 RZ:

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

RS RS RS RS RS RS RS

R R6 R6 R6 R R R6

R7 R7 R7 R7 R7 R7 R7
R RE RS RE R& R& RE_fig

. R9 R9 RO R9 R9 R9 R9_fig
RIO- | RIO' | R0 ~| R0 | R0 | R0 | Rlo_fig
Rl “RII R11 R11 R11 R11 R11_fig
R12 R12 R12 RI2 R12 R12 R12_fig
RI3(SF) | RI3(SP) | Rl3sve = RI3am | RI3und | RI3_irg | RI3_fig
RI4(LR) | RI4(LR) | Rl4svc | Rl4.aht | Rl4und | Rl4irg | RI4 fig
RIS(PC}) | RIS(PC) | RIS(PC) | RIS(PC) | RI5S(PC) | RIS(PC) | RI15(PC)
CPSR CPSR CPSR CPSR CPSR CPSR CPSR
' SPSR_svc | SPSR_abt | SPSR_und | SPSR_irg | SPSR_fig

Shading indicates that the normal register used by User or System mode has been replaced by an
alternative register specific to the exception mode.

5P = stack pointer
LR = link register
FC = program counter

CPS5F. = current program status register

SPSR = saved program status register

ARM
Register
Organization

Format of ARM CPSR and SPSR

31302928 27 2625 2423° 2 1 2019181716 15141312 1110°9 &8 7 6 5 4 '3 2 1 0

ANIZ1CIVIQ | Res | J | Reserved | GE[3:10] F.eserved E(A|T|F|T M[4:0]
. :) —‘-Y-'— e A e T_ T —
User flags System control flags

Figure 14.27 Format of ARM CPSR AND SPSR

Exception tvpe

Mode

Mormal
entry
address

Description

Eeset

SUpervisor

O COOOOOO0

Occurs when the svstem is initialized.

Data ahon

Ao

O (O0000 10

Occurs when an invalid memory address
has been accessed, such as if there is no
physical memory for an address or the
correct access permission is lacking.

FIQ) (fast interrupt)

FIQ)

Ox 000000 1 C

Occurs when an external device asserts the
FIQ pin on the processar. An intermupt
cannot be interrupted except by an FIQ).
FI() i= designed to suppon a data transfer
or channel process., and has sufficient
priviate registers to remove the need for
register saving in such applications,
therefore minimizing the overhead of
context switching. A fast intermupt cannot
be interrupted.

[RQ) {interrupt)

IR

O (OO0 TS

Occurs when an external device asserts the
[E() pin on the processor. An interrupt
cannot be interrupted except by an FI(Q).

FPrefetch abort

Ao

O OOO0000C

Occurs when an attempt to fetch an
instruction results in a memaory fault. The
exception is raised when the instruction
enters the execute stage of the pipeline.

Undefined
instructions

Undefined

O (O000002

Occurs when an instruction not in the
instruction set reaches the execute stage of
the pipeline.

Software interrupt

SUpervisor

Ox 00000008

Generally used to allow user mode
programs to call the O5. The user program
executes a SWI instruction with an
argument that identifies the function the
user wishes to perform.

ARM
Interrupt
Vector

	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(8th Week)
	Outline
	Slide Number 3
	3.3 Outline
	Processor Organization
	CPU With the System Bus
	CPU Internal Structure
	Register Organization
	User-Visible Registers
	�Condition Codes
	Control and Status Registers
	Program Status Word (PSW)
	Slide Number 13
	Instruction Cycle
	Instruction Cycle
	Instruction Cycle State Diagram
	Data Flow, Fetch Cycle
	Data Flow, Indirect Cycle
	Data Flow, Interrupt Cycle
	Pipelining Strategy
	Two-Stage Instruction Pipeline
	Additional Stages
	Timing Diagram for Instruction Pipeline Operation
	The Effect of a Conditional Branch on Instruction Pipeline Operation
	Six Stage �Instruction Pipeline
	Alternative Pipeline Depiction
	Speedup Factors�with Instruction�Pipelining
	Pipeline Hazards
	Resource �Hazards
	Data Hazards
	Types of Data Hazard
	Control Hazard
	Multiple Streams
	Prefetch Branch Target
	Loop Buffer
	Loop Buffer
	Branch Prediction
	Branch Prediction Flow Chart
	Branch Prediction State Diagram
	Dealing With �Branches
	Intel 80486 Pipelining
	80486 �Instruction �Pipeline �Examples
	�x86 Processor Registers
	�x86 Processor Registers
	x86 EFLAGS Register
	Control �Registers
	Mapping of MMX Registers to �Floating-Point Registers
	Interrupt Processing
	�x86 Exception and Interrupt Vector Table
	The ARM Processor
	Simplified ARM Organization
	Processor Modes
	Exception Modes
	�ARM �Register �Organization
	Format of ARM CPSR and SPSR
	�ARM�Interrupt �Vector

