SEN361 Computer Organization

Prof. Dr. Hasan Hiiseyin BALIK
(7" Week)



o

Outline |
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Ir.lstruction.Sets: ,Add.ressing Modes, and
Formats

3.3 Processor Structure and Function
3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar
Processors | | |



-+

3.2 Instruction Sets: Addressing Modes and
Formats



3.2 Outline

O Addressing Modes
m x86 and ARM Addressing Modes
m Instruction Formats
m x86 and ARM Instruction Formats

- Assembly Language



Addressing Modes

m Immediate

m Direct

m Indirect

i Register

m Register indirect
m Displacement

m Stack



Addressing
Modes

Instruction Instruction
| Operand | (I A |
Mermory
| Ulperand
(a) Immediate (b} Direct
Instruction ~ * Instriction «
1 A ] | R ]
Memory .
Ukperand |_.
Operand
Registers
(el Indirect {d} Register
Instrction Instruction
I IR | L IR]T A 1
Memory | Memory
L |—) e
Registers Registers

(e Register Indirect

{f} Dasplacement

Instruction

Imiplicit

L

Top of Stack
Register

(gl Stack




Basic Addressing Modes ' |I

Mode Algorithm rincipal Advantage Principal Disadvantage
Immediate Operand = A No memory reference  Limited operand magnitude
Direct EA=A Simple Limited address space
Indirect EA =(A) Large address space Multiple memory references
Register EA=R Mo memory reference  Limited address space
Register indirect EA =(R) Large address space  Extra memory reference
Displacement EA=A+(R) Flexibility Complexity
stack EA =top of stack  No memory reference  Limited applicability

Table 13.1 Basic Addressing Modes



Immediate Addressing

m Simplest form of addressing
m Operand = A

m This mode can be used to define and use constants or set initial
| values of variables

m Typically the number will be stored in twos lcomplement form
= The leftmost bit of the operand field is used as a sign bit

m Advantage:

m no memory reference other than the instruction fetch is required to

obtain the operand, thus saving one memory or cache cycle in the
instruction cycle ' | -

M Disadvantage:

m The size of the number is restricted to the size of the address field, which,
in most instruction sets, is small compared with the word length



Direct Addressing

Address field
contains the
effective address of
the operand

Effective address
(EA) = address field

&)

Was common in
earlier generations
of computers

Requires only one
memory reference
and no special
calculation

Limitation is that it
provides only a
limited address

space




Indirect Addressing

m Reference to the address of a Word In memory Wthh contams a full-
length address of the operand

= EA = (A)

m Parentheses are to be-interpreted as meaning contents of -

m Advantage:
m For a word length of N.an address space.of 2N is now available

m Disadvantage:
m Instruction execution requlres two memory references to fetch the operand
m Oneto getits address and a second to get its value

n A rarely used variant of indirect addressmg 1S mu1t11eve1 or cascaded
indirect addressing

BRI (AY )

m Disadvantage is that three or more memory references could be required
to fetch an operand .



. | |
Register Addressing

m Address field refers to a register rather than a main memory
address

m EA=R

m Advantages:
N OnIy a small address field is needed in the instruction

= No time-consuming memory references are required

O Disadvantage:

m The address space is very limited



Register Indirect Addressing

m Analogous to indirect addressing

m The only difference is whether the address field refers to a
memory location or a register

m EA . (R)

m Address space limitation of the address field is overcome by
having that field refer to a word-length location containing an
address

m Uses one less memory reference than indirect addressing



. | | |
Displacement Addressing

m Combines the capabilities of direct addressing and register
indirect addressing

mEA=A+ (@R

m Requires that the instruction have two address fields, at least one
- of which is explicit | | |
m The value contained in one address field (value = A) is used directly

m The other address field refers to a register whose contents are added
to A to produce the effective address

m Most common uses:

- m Relative addressing
m Base-register addressing
= Indexing



. | |
Relative Addressing

m The implicitly referenced register is the program counter
(PC) .

m The next instruction address is added to the address field to
produce the EA

m Typically the address field is treated as a twos complement
number for this operation -

m Thus the effective address is a displacement relative to the
address of the instruction

m Exploits the concept of locality -

m Saves address bits in the instruction if most memory
references are relatively near to the instruction being
executed



_|_
Base-Register Addressing

m The referenced register contains a main memory address and
the address field contains a displacement from that address

m The register reference may be explicit or implicit
m Exploits the locality of memory references
m Convenient means of implementing segmentation

m In some implementations a single segment base register is
employed and is used implicitly

= In others the programmer ma'y choose a reg1ster to hold the
base address of a segment and the instruction must reference it
explicitly



" Indexed Addressing

m' The address field references a main memory address and the referenced
register contains a positive displacement from that address

m The method of calculating the EA is the same as for base-register addressing

m An important use is to provide an efficient mechanism for performing
iterative operations

m Autoindexing
m Autofnatically increment or decrement the index register after each reference to it
= EA=A+ R
' (R)€E R)+1

m Postindexing

®m Indexingis performed after the indirection
= EA=A)+ [R)

m Preindexing

® Indexing is performed before the indirection
= EA=(A+[R)



Stack Addressing

m A stack is a linear array of locations
m Sometimes referred to as a pushdown list or last-in-first-out queue

m A stack is a reserved block of locations
m [tems are appended to the top of the stack so that the block is partially filled

m Associated with the stack is a pointer whose value is the address of the top of
the stack

m The stack pointer is maintained in a register
m Thus references to stack locations in memory are in fact register indirect addresses

m Is a form of implied addressing

® The machine instructions need not include a memory reference but
implicitly operate on the top of the stack



x86 Addressing Modes

Mode

Immediate

Register Operand

Displacement

Base

Base with Displacement

Scaled Index with Displacement

Base with Index and Displacement

Base with Scaled Index and Displacement

Algorithm
Operand = A
LA=R
LA =(5K) + A

LA = (SR) + (B)

LA = (SR) + (B) + A
LA=(SR)+(D) x § + A

LA = (SR) + (B) +(I) #+ A
LA = (SR) + (I) x § + (B) + A

Eelative LA =(PC)+ A
LA = linear address

(4 = . contents of X

3R = Segment register

FC = program counter

A = contents of an address field in the instruction

K = register

B = ' base register

I = index register

3 = scaling factor



x86 Addressing Mode Calculation

Segment Registers —
- Base Register

Index Register

scale
1.2.4,0r 8

+ Displacement
(in instruction;

0, 8, or 32 bits)

> 3 Effective.
Descriptor Registers Address
Linear
Address
+
i PR
— A CCess llights['h
i Limit
] Base Address

¥l

Figure 13.2 x86 Addressing Mode Calculation

- Limit ———— =,

Segment
Base
Address



ARM
Indexing

Methods

STRB rfl, [rl, #12]

0xC 0x20C

rl

Original
base register -ﬂxEﬂU T 0x200

(a) Orffset
STRE.rd, [rl, #1271
rl Offset
Updated
hasemgisterl 0x20C |<—| OxC l—'bﬂx20C
[

rl

Original :
base register -I:]Ix2ﬂ0 o 0x200

(b Preindex
STRE r0, [rl], #12
rl Offset
Updated =
hﬂseregisterl 0x20C |4—| 0=C | 0x20C

P

rl

Original . .
base register | 0x200 = 0200

(c)} Postindex

Figure 13.3 ARM Indexing Methods

0x5

0x5

0x5

ri

Destination

ri
[ 0x5 |

ri
0x5

for STR

Destination
register
for STR

Destination
register
for STR



ARM Data Processing Instruction Addressing
and Branch Instructions

m Data processing instructions

m Use either register addressing or a mixture of register and
immediate addressing

m For register addressing the value in one of the register operands
may be scaled using one of the five shift operators

m Branch instructions
m The only form of addressing for branch instructions is immediate
- m Instruction contains 24 bit value
m Shifted 2 bits left so that the address is on a word boundary
m Effective range +/-32MB from from the program counter



LDMxx rl0,
STMxx rl0, {r0, rl, rd4}

Base register

frd, rl,-rd}

rli

0x20C

Increment

Decrement

Decrement

Increment _
after (IA) before (IB) after (DA) before (DB)
(rd)
(rd) (rl)
(rl) (r0)
(£0) (rd)
(rl) (rd)
(r0) {rl)
(r0)

Figure 134 ARM Load/Store Multiple Addressing

O0x218
0x214
0x210
0x20C
0x208
O0x204
0x200

- ARM Load/Store Multiple Addressing




Instruction Formats

Define the
layout of the
bits of an
instruction, in
terms of its

constituent
fields

Must include
an opcode
and, implicitly
or explicitly,

indicate the
addressing
mode for each
operand

For most
instruction
I sets more than

one
instruction
format is used




.
Instruction Length

m Most basic design issue

m Affects, and is affected by:
= Memory size
= Memory organization

. m Bus structure
m Processor complexity

m Processor speed

m Should be equal to the memory-transfer length or one should
. be a multiple of the other.

= Should be a multiple of the character length, which is usually
8 bits, and of the length of fixed-point numbers



o

Allocation of Bits

m Number of addressing modes
m Number of operands

o Regiéter Versus mémory |

m Number of register sets

m Address range

m Address granularity




PDP-8 Instruction Format

Memory Reference Instructions

| Opcode | D1 | ZiC | Displacement |
0 2 3 4 ¥ 11
Input/Output Instructions
| | | 0 | Device | Opcode |
0 2 3 B 9 11
Register Reference Instructions

Group 1 Microinstructions

L 1 ] 0

| CLA | CLL | CMA | CML | RAR | RAL | BSW | IAC |

0 Lo Ned 3 L 7] 7 B o L0 11
Group 2 Microinstructions
[ 1 1 1 1 | CLA |SMA | 5ZA | SNL | RSS | OSR | HLT | 0 |
0 1 2 3 4 5 (i) 7 b 9 L0 11
Group 3 Microinstructions
I I I I Jcea MQal o [moL| o [ o [ o [ 1 |
0 1 2z 3 4 3 G 7 B 9 L0 11
D/ = Direct/Indirect address IAC = Increment ACcumulator
ZIC = Fage 0 or Cument page SMA = Skip on Minus Accumulator
CLA = Clear Accumulator SZA " = Skip on Zero Accumulator
CLL = Clear Link SNL = Skip on Nonzero Link
CMA = CoMplement Accumulator R55 = Reverse Skip Sense
CML = CoMplement Link O5SR = Or with Switch Register
RAR = Rotate Accumultator Right HLT = HaLT
EAL = Rotate Accumulator Left MQA = Multiplier Quotient into Accumulator
BSW = Byte SWap MQL = Multiplier Quotient Load

Figure 11.5 PDP-8 Instruction Formats



PDP-10 Instruction Format

Opcode Register I Indg § Memory Address
= Eegister g

0 _ Bl h o R 17 18 _ _ 33

[ = indirect bit

Figure 11.6 PDP-10 Instruction Format



Variable-Length Instructions

m Variations can be provided efficiently and compactly
m Increases the complexity of the processor

m Does not remove the desirability of making all of the
instruction lengths integrally related to word length
m Because the processor does not know the length- of the next

instruction to be fetched a typical strategy is to fetch a number of
bytes or words equal to at least the longest possible instruction

= Sometimes multiple instructions are fetched



—_

10

11

12

13

PDP-11 Instruction Format

Opeode|  Source Destination Dipeade R Source 3 Opcode et
4 f f 7 f 8 .
Crpoode FF| Destination Orpeode Drestination| 6 Opeode CC
] x L1 1o f 12 4
Opcode R Opeade 9 | Opeode|  Source Drestination Memory Address
13 3 L6 4 L1 f 16
Opeode R Source Memory Address
7 3 L 14
Crpeode FP| Source Memory Address
] 2 [ 16
Crpeode Diestination Memory Address
1y L 1t
Opeode|  Source Destination MMemory Address 1 Memory Address 2
4 (1] L 16 1

MNumbers below fields indicate hit length

Source and Destination each contain a 3-bit addressing mode field and a 3-hit register number
FFP indicates one of four fleating-point registers
R indicates one of the general-purpose registers
CC is the condition code field :

Figure 13.7 Instruction Formats for the PDP-11




VAX Instruction
Examples

Hexadecimal Explanation Assembler Notation
Format and Description
8 bits

Opcode for RSB

RSB
Retum from subroutine

Amount of displacement from

PC relative to location A

] code for 3
Opcode for CLEL GLRLRY

5 9 Register R9 Clear register R9

B (] Opcode for MOVW MOVW 336(R4), 23(R11)

C 4 W“T_d_ displacement made, Move a word from address

6 4 Regster B : that is 356 plus contents
356 in hexadecimal of B4 to address that is

{} ]_ 25 plus contents of R11
Byte displacement mode,

A B Register R11

1 9 25 in hexadecimal

C 1 Opcode for ADDL3 ADDL3 #5, RO, @A[R2]

(] 5 Short literal 5 Add 5 to a 32-bit integer in

= #] R0 and store the result in

2 0 Rmear e ) location whose address is

4 2 Index prefix R2 sum of A and 4 times the

D F . Indirect word relative contents of K2
{displacement from PC)

Figure 13.8 Exﬁmples of VAX Instructions



x86 Instruction Format

Dorl 0} or 1 0orl forl byies
Instructionf Segment ﬂpi:'ranl:l A.d|l:lrn':¢
efix override HEE SHEE
pr override | override
'
:
L] |||J.
i “41,1.'_'-..,IJ-I'4]J"_I|'IL'!€ 'a"'LLi_:rS Dorl Fllnrl ﬂ.l..l.,u_rrl- ﬂ‘.l.l,,u_rf-'l-
Instruction prefixes Opcode ModR/m sSIB Displacement Immediate
- - -Il. R Bt
-‘.'F' :.q. ""."'-
i-'l'-* : " “h""-
- ] 4 LT
- L § § i -~
Mod Rep/Opeade R™M Scale Index Base
7 i 5 4 3 2 1 | 7 fi 5 4 3 2 1 0

Figure 13.9 x86 Instruction Format




ARM InstructionFormats =1

NNINWIF65M232221201918171615141312 1110 9 8 7:6 5 4°3 2.1 0

:in'it,:l:dr:ﬁ::;:ﬁ cond (0 O 0| opcode |5 An Rd shift amount | shift| 0 R
*’“‘:,cgfgﬁ;‘*:;;,‘ﬁ cond 0 0 0 opcode |5 " hn Rd 7s lolshift] 1] Am
o I;:?:_;?;E cond (0 0 1| opcode |5 An Rd rotate immediate
jmmd:::_.dmﬁ cond fD 1 0O|P|U|B WL Rn Rd f immediate f
I_:E]if;fi:éinl Fqnd 7I3I 1 1|P L.l B W £ Rn Rd 5hifFamnunt 5hﬁift D Rmi
et | cond |1 0 ofefu[s|w|L] &n _  register lst
prancwbrnc [ cond |1 0 1L - . 24-bit offset

& = For data processing instructions, signifies that the instruction
updites the condition codes
& = For load/store multiple instructions, signifies whether instruction
execution is restricted o supervisor mode
P, U, W = bits that distinguish among
different types of addressing_maode
B = Distinguishes between an unsigned
: byte (B==1) and a word (B==()) access
L = For load/store instructions, distinguishes
between a Load (L==1) and a Store {(L==1)
L. = For branch instructions, determines whether a
return address is stored in the link register

Figure 13.10 ARM Instruction Formats



Examples of Use of ARM
Immediate Constants

N30292B272625 2423220191817 1615747131211 10 9 & 7 6 5 4 3 2 1.0
glojojojojojojojojojojojojojojojofojojojojojolo

ror #0 - range 0 through OxO00000FF - step Ox000000 |

13029 BITHS 3TN 0191817T161574131211109 &8 7 6 5 4
ojojo|ojo|ojojojo|ojo|jojojojo|ojO|O|OjOjO|O|O|O

(EF]
]
=t
=

ror #8 - range 0 through OxFFO00000 - step 0x0 1000000

31 3029 3F 27 26 252423 X2 N 201918 171615141312 1110 2°8 7 6 5 4 3 2 1
glojojojojojajojojojojojojojajojojojaljojolo 010

ror #30 - range 0 through OxQO0003FC - step Ox00000004

Figure 13.11 Examples of Use of ARM Immediate Constants



Thumb InstructionSet e

1514131211109 B 7 6 5 4 32 1 0

- add/subractcompare/maove op . : ‘
immediate format |0 0 1cade | BA/RN immediate

ADD ¥3, #19 [0 0 1|1 0O 1 1O OO0 10011

always update :
condition condition TEro
code flags redation

ADDS r3, r3, #1851 110|000 1|00 10[1]/00Q11|0011|000QO|ODO1T1T0OO011

data pr::-:‘n:.ieiing : 3 .
immediate farmat cond |0 0 1| opcode |5 Rn Rd rotate immediate

3130292827 625242322 101918171615 14131211109 8 76 5 4 3 2 1 0

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent



Assembler

m Machines store aﬁd understand binafy instructions
m E.g.N=1+]+K initialize I=2,]=3,K=4

n Program starts in location _101

m Data starting 201

m Code: .

m Load contents of 201 into AC

m Add contents of 202 to AC:

m Add contents of 203 to AC

m Store contents of AC to 204

m Tedious and error prone




_|_
Improvements

m Use hexadecimal rather than binary
m Code as series of lines
m Hex address and memory address
m Need to translate automatically using program -

m Add symbolic names or mnemonics for instructions

m Three fields per line
m Location address
m Three letter opcode
- m If memory reference: address

m Need more complex translation program



Program in:

Binary

Address Contents
101 0010 0010 101 2201
102 0001 0010 102 1202
103 0001 0010 103 1203
104 0011 0010 104 3204
201 0000 0000 201 0002
202 0000 0000 202 0003
203 0000 0000 203 0004
204 0000 0000 204 0000

Hexadecimal
Address Contents
101 2201
102 1202
103 1203
104 3204
201 0002
202 0003
203 0004
204 0000




Symbolic Addresses

m First field (address) now symbolic
m Memory references in third field now symbolic

m Now have assembly language and need an assembler to
translate

m Assembler used for some systems programming
m Compliers

. I/0 routines



Symbolic Program

Address
101
102
103
104

201
202
203
204

Instruction
LDA
ADD
ADD
STA

DAT
DAT
DAT
DAT

201
202
203
204

o B~ WD




Assembler Program

Label Operation Operand
FORMUL LDA I
ADD J
ADD K
STA N
I DATA 2
J DATA 3
K DATA 4
N DATA 0




Assembler _

Address

101
102
103
104

201
202
203
204

(010
(MM
(]
(011

(MMM
CHOMCH
(MMM
(MM

Contenits
0010 101
(010 102
0010 103
(010 104
OO0 201
0000 202
(00 2003
Q000

204

2201
1202
1203
3204

0002
0003
0004
Q000

Address

101
102
103
104

201
202
203
204

(@) Binary program

101
102
1003
104

201
202
203
204

Address

Instruction
LDA 201
ADD 202
ADD 203
STA 204
DAT 2
DAT 3
DAT 4
DAT 0

(c) Symbolic program

Contents

2201
1202
1203
3204

0002
0003
0004
QOO0

(b) Hexadecimal program

Label Operation Operand
FORMUL LDA

ADD
ADD
aTA

| DATA
J DATA
K DATA
N DATA

2:'—&—!

= = L b

(d) Assembly program

Figure 11.13 Computation of the Formula N=1+ J+ K



	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(7th Week)
	Outline
	Slide Number 3
	3.2 Outline
	Addressing Modes
	Addressing �Modes
	Basic Addressing Modes
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Register Addressing
	Register Indirect Addressing
	Displacement Addressing
	Relative Addressing
	Base-Register Addressing
	Indexed Addressing
	Stack Addressing
	�x86 Addressing Modes
	x86 Addressing Mode Calculation
	ARM �Indexing �Methods
	ARM Data Processing Instruction Addressing�and Branch Instructions
	ARM Load/Store Multiple Addressing
	Instruction Formats
	Instruction Length
	Allocation of Bits
	PDP-8 Instruction Format
	PDP-10 Instruction Format
	Variable-Length Instructions
	PDP-11 Instruction Format
	VAX Instruction Examples
	x86 Instruction Format
	ARM Instruction Formats
	Examples of Use of ARM Immediate Constants
	Thumb Instruction Set
	Assembler
	Improvements
	Program in:�Binary 					Hexadecimal
	Symbolic Addresses
	Symbolic Program
	Assembler Program
	Assembler

