
+

SEN361 Computer Organization

Prof. Dr. Hasan Hüseyin BALIK
(7th Week)

+

Outline
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and
Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar
Processors

+

3.2 Instruction Sets: Addressing Modes and
Formats

+

3.2 Outline

 Addressing Modes

 x86 and ARM Addressing Modes

 Instruction Formats

 x86 and ARM Instruction Formats

 Assembly Language

+
Addressing Modes

 Immediate

Direct

 Indirect

Register

Register indirect

Displacement

Stack

+

Addressing
Modes

+
Basic Addressing Modes

+
Immediate Addressing

 Simplest form of addressing

 Operand = A

 This mode can be used to define and use constants or set initial
values of variables
 Typically the number will be stored in twos complement form
 The leftmost bit of the operand field is used as a sign bit

 Advantage:
 no memory reference other than the instruction fetch is required to

obtain the operand, thus saving one memory or cache cycle in the
instruction cycle

 Disadvantage:
 The size of the number is restricted to the size of the address field, which,

in most instruction sets, is small compared with the word length

Direct Addressing

Address field
contains the

effective address of
the operand

Effective address
(EA) = address field

(A)

Was common in
earlier generations

of computers

Requires only one
memory reference

and no special
calculation

Limitation is that it
provides only a
limited address

space

+
Indirect Addressing

 Reference to the address of a word in memory which contains a full-
length address of the operand

 EA = (A)
 Parentheses are to be interpreted as meaning contents of

 Advantage:
 For a word length of N an address space of 2N is now available

 Disadvantage:
 Instruction execution requires two memory references to fetch the operand
 One to get its address and a second to get its value

 A rarely used variant of indirect addressing is multilevel or cascaded
indirect addressing
 EA = (. . . (A) . . .)
 Disadvantage is that three or more memory references could be required

to fetch an operand

+
Register Addressing

 Address field refers to a register rather than a main memory
address

 EA = R

 Advantages:
 Only a small address field is needed in the instruction

 No time-consuming memory references are required

 Disadvantage:
 The address space is very limited

+
Register Indirect Addressing

 Analogous to indirect addressing
 The only difference is whether the address field refers to a

memory location or a register

 EA = (R)

 Address space limitation of the address field is overcome by
having that field refer to a word-length location containing an
address

 Uses one less memory reference than indirect addressing

+
Displacement Addressing

 Combines the capabilities of direct addressing and register
indirect addressing

 EA = A + (R)

 Requires that the instruction have two address fields, at least one
of which is explicit
 The value contained in one address field (value = A) is used directly
 The other address field refers to a register whose contents are added

to A to produce the effective address

 Most common uses:
 Relative addressing
 Base-register addressing
 Indexing

+
Relative Addressing

 The implicitly referenced register is the program counter
(PC)
 The next instruction address is added to the address field to

produce the EA

 Typically the address field is treated as a twos complement
number for this operation

 Thus the effective address is a displacement relative to the
address of the instruction

 Exploits the concept of locality

 Saves address bits in the instruction if most memory
references are relatively near to the instruction being
executed

+
Base-Register Addressing

 The referenced register contains a main memory address and
the address field contains a displacement from that address

 The register reference may be explicit or implicit

 Exploits the locality of memory references

 Convenient means of implementing segmentation

 In some implementations a single segment base register is
employed and is used implicitly

 In others the programmer may choose a register to hold the
base address of a segment and the instruction must reference it
explicitly

+
Indexed Addressing

 The address field references a main memory address and the referenced
register contains a positive displacement from that address

 The method of calculating the EA is the same as for base-register addressing

 An important use is to provide an efficient mechanism for performing
iterative operations

 Autoindexing
 Automatically increment or decrement the index register after each reference to it
 EA = A + (R)
 (R) (R) + 1

 Postindexing
 Indexing is performed after the indirection
 EA = (A) + (R)

 Preindexing
 Indexing is performed before the indirection
 EA = (A + (R))

+
Stack Addressing

 A stack is a linear array of locations
 Sometimes referred to as a pushdown list or last-in-first-out queue

 A stack is a reserved block of locations
 Items are appended to the top of the stack so that the block is partially filled

 Associated with the stack is a pointer whose value is the address of the top of
the stack
 The stack pointer is maintained in a register
 Thus references to stack locations in memory are in fact register indirect addresses

 Is a form of implied addressing

 The machine instructions need not include a memory reference but
implicitly operate on the top of the stack

x86 Addressing Modes

x86 Addressing Mode Calculation

+

ARM
Indexing
Methods

+ ARM Data Processing Instruction Addressing
and Branch Instructions

 Data processing instructions

 Use either register addressing or a mixture of register and
immediate addressing

 For register addressing the value in one of the register operands
may be scaled using one of the five shift operators

 Branch instructions

 The only form of addressing for branch instructions is immediate

 Instruction contains 24 bit value

 Shifted 2 bits left so that the address is on a word boundary

 Effective range +/-32MB from from the program counter

+

ARM Load/Store Multiple Addressing

Instruction Formats

Define the
layout of the

bits of an
instruction, in

terms of its
constituent

fields

Must include
an opcode

and, implicitly
or explicitly,
indicate the
addressing

mode for each
operand

For most
instruction

sets more than
one

instruction
format is used

+
Instruction Length

 Most basic design issue

 Affects, and is affected by:
 Memory size

 Memory organization

 Bus structure

 Processor complexity

 Processor speed

 Should be equal to the memory-transfer length or one should
be a multiple of the other

 Should be a multiple of the character length, which is usually
8 bits, and of the length of fixed-point numbers

+
Allocation of Bits

 Number of addressing modes

 Number of operands

 Register versus memory

 Number of register sets

 Address range

 Address granularity

PDP-8 Instruction Format

+
PDP-10 Instruction Format

+
Variable-Length Instructions

 Variations can be provided efficiently and compactly

 Increases the complexity of the processor

 Does not remove the desirability of making all of the
instruction lengths integrally related to word length
 Because the processor does not know the length of the next

instruction to be fetched a typical strategy is to fetch a number of
bytes or words equal to at least the longest possible instruction

 Sometimes multiple instructions are fetched

PDP-11 Instruction Format

+

VAX Instruction
Examples

x86 Instruction Format

ARM Instruction Formats

Examples of Use of ARM
Immediate Constants

Thumb Instruction Set

+
Assembler

 Machines store and understand binary instructions

 E.g. N= I + J + K initialize I=2, J=3, K=4

 Program starts in location 101

 Data starting 201

 Code:

 Load contents of 201 into AC

 Add contents of 202 to AC

 Add contents of 203 to AC

 Store contents of AC to 204

 Tedious and error prone

+
Improvements

 Use hexadecimal rather than binary
 Code as series of lines
 Hex address and memory address

 Need to translate automatically using program

 Add symbolic names or mnemonics for instructions

 Three fields per line
 Location address
 Three letter opcode
 If memory reference: address

 Need more complex translation program

Program in:
Binary Hexadecimal
Address Contents Address Contents

101 0010 0010 101 2201 101 2201

102 0001 0010 102 1202 102 1202

103 0001 0010 103 1203 103 1203

104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002

202 0000 0000 202 0003 202 0003

203 0000 0000 203 0004 203 0004

204 0000 0000 204 0000 204 0000

+
Symbolic Addresses

 First field (address) now symbolic

 Memory references in third field now symbolic

 Now have assembly language and need an assembler to
translate

 Assembler used for some systems programming
 Compliers

 I/O routines

+
Symbolic Program

Address Instruction

101 LDA 201

102 ADD 202

103 ADD 203

104 STA 204

201 DAT 2

202 DAT 3

203 DAT 4

204 DAT 0

+
Assembler Program

Label Operation Operand

FORMUL LDA I

ADD J

ADD K

STA N

I DATA 2

J DATA 3

K DATA 4

N DATA 0

Assembler

	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(7th Week)
	Outline
	Slide Number 3
	3.2 Outline
	Addressing Modes
	Addressing �Modes
	Basic Addressing Modes
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Register Addressing
	Register Indirect Addressing
	Displacement Addressing
	Relative Addressing
	Base-Register Addressing
	Indexed Addressing
	Stack Addressing
	�x86 Addressing Modes
	x86 Addressing Mode Calculation
	ARM �Indexing �Methods
	ARM Data Processing Instruction Addressing�and Branch Instructions
	ARM Load/Store Multiple Addressing
	Instruction Formats
	Instruction Length
	Allocation of Bits
	PDP-8 Instruction Format
	PDP-10 Instruction Format
	Variable-Length Instructions
	PDP-11 Instruction Format
	VAX Instruction Examples
	x86 Instruction Format
	ARM Instruction Formats
	Examples of Use of ARM Immediate Constants
	Thumb Instruction Set
	Assembler
	Improvements
	Program in:�Binary 					Hexadecimal
	Symbolic Addresses
	Symbolic Program
	Assembler Program
	Assembler

