

SEN361 Computer Organization Prof. Dr. Hasan Hüseyin BALIK (7th Week) Outline 3. The Central Processing Unit **3.1 Instruction Sets: Characteristics and Functions 3.2 Instruction Sets: Addressing Modes and Formats 3.3 Processor Structure and Function 3.4 Reduced Instruction Set Computers 3.5 Instruction-Level Parallelism and Superscalar** Processors

3.2 Instruction Sets: Addressing Modes and Formats

+

3.2 Outline

Addressing Modes
x86 and ARM Addressing Modes
Instruction Formats
x86 and ARM Instruction Formats
Assembly Language

Addressing Modes

- Immediate
- Direct
- Indirect
- Register
- Register indirect
- Displacement
- Stack

Addressing Modes

╉

Basic Addressing Modes

Mode	Algorithm	Principal Advantage	Principal Disadvantage
Immediate	Operand = A	No memory reference	Limited operand magnitude
Direct	EA = A	Simple	Limited address space
Indirect	EA = (A)	Large address space	Multiple memory references
Register	EA = R	No memory reference	Limited address space
Register indirect	EA = (R)	Large address space	Extra memory reference
Displacement	EA = A + (R)	Flexibility	Complexity
Stack	EA = top of stack	No memory reference	Limited applicability

Table 13.1 Basic Addressing Modes

Immediate Addressing

- Simplest form of addressing
- Operand = A
- This mode can be used to define and use constants or set initial values of variables
 - Typically the number will be stored in twos complement form
 - The leftmost bit of the operand field is used as a sign bit

Advantage:

no memory reference other than the instruction fetch is required to obtain the operand, thus saving one memory or cache cycle in the instruction cycle

Disadvantage:

The size of the number is restricted to the size of the address field, which, in most instruction sets, is small compared with the word length

Direct Addressing

Address field contains the effective address of the operand

Was common in earlier generations of computers

> Requires only one memory reference and no special calculation

> > Limitation is that it provides only a limited address space

Indirect Addressing

 Reference to the address of a word in memory which contains a fulllength address of the operand

- EA = (A)
 - Parentheses are to be interpreted as meaning contents of
- Advantage:
 - For a word length of N an address space of 2^N is now available
- Disadvantage:
 - Instruction execution requires two memory references to fetch the operand
 - One to get its address and a second to get its value
- A rarely used variant of indirect addressing is multilevel or cascaded indirect addressing
 - EA = (... (A) ...)
 - Disadvantage is that three or more memory references could be required to fetch an operand

Register Addressing

 Address field refers to a register rather than a main memory address

- EA = R
- Advantages:
 - Only a small address field is needed in the instruction
 - No time-consuming memory references are required

Disadvantage:

The address space is very limited

Register Indirect Addressing

- Analogous to indirect addressing
 - The only difference is whether the address field refers to a memory location or a register

■ EA = (R)

- Address space limitation of the address field is overcome by having that field refer to a word-length location containing an address
- Uses one less memory reference than indirect addressing

Displacement Addressing

Combines the capabilities of direct addressing and register indirect addressing

- $\blacksquare EA = A + (R)$
- Requires that the instruction have two address fields, at least one of which is explicit
 - The value contained in one address field (value = A) is used directly
 - The other address field refers to a register whose contents are added to A to produce the effective address

Most common uses:

- Relative addressing
- Base-register addressing
- Indexing

Relative Addressing

- The implicitly referenced register is the program counter (PC)
 - The next instruction address is added to the address field to produce the EA
 - Typically the address field is treated as a twos complement number for this operation
 - Thus the effective address is a displacement relative to the address of the instruction
- Exploits the concept of locality
- Saves address bits in the instruction if most memory references are relatively near to the instruction being executed

Base-Register Addressing

- The referenced register contains a main memory address and the address field contains a displacement from that address
- The register reference may be explicit or implicit
- Exploits the locality of memory references
- Convenient means of implementing segmentation
- In some implementations a single segment base register is employed and is used implicitly
- In others the programmer may choose a register to hold the base address of a segment and the instruction must reference it explicitly

Indexed Addressing

- The address field references a main memory address and the referenced register contains a positive displacement from that address
- The method of calculating the EA is the same as for base-register addressing
- An important use is to provide an efficient mechanism for performing iterative operations
- Autoindexing
 - Automatically increment or decrement the index register after each reference to it
 - EA = A + (R)
 - (R) ← (R) + 1
- Postindexing
 - Indexing is performed after the indirection
 - EA = (A) + (R)
- Preindexing
 - Indexing is performed before the indirection
 - EA = (A + (R))

Stack Addressing

- A stack is a linear array of locations
 - Sometimes referred to as a pushdown list or last-in-first-out queue
- A stack is a reserved block of locations
 - Items are appended to the top of the stack so that the block is partially filled
- Associated with the stack is a pointer whose value is the address of the top of the stack
 - The stack pointer is maintained in a register
 - Thus references to stack locations in memory are in fact register indirect addresses
- Is a form of implied addressing
- The machine instructions need not include a memory reference but implicitly operate on the top of the stack

x86 Addressing Modes

Mode	Algorithm
Immediate	Operand = A
Register Operand	LA = R
Displacement	LA = (SR) + A
Base	LA = (SR) + (B)
Base with Displacement	LA = (SR) + (B) + A
Scaled Index with Displacement	$LA = (SR) + (I) \times S + A$
Base with Index and Displacement	LA = (SR) + (B) + (I) + A
Base with Scaled Index and Displacement	$LA = (SR) + (I) \times S + (B) + A$
Relative	LA = (PC) + A
LA = linear address (X) = contents of X SR = segment register PC = program counter A = contents of an address field in the instruction	

- R = register
- B = base register
- I = index register
- S = scaling factor

x86 Addressing Mode Calculation

Figure 13.2 x86 Addressing Mode Calculation

STRB r0, [r1, #12]

ARM Indexing Methods

Figure 13.3 ARM Indexing Methods

ARM Data Processing Instruction Addressing and Branch Instructions

Data processing instructions

- Use either register addressing or a mixture of register and immediate addressing
- For register addressing the value in one of the register operands may be scaled using one of the five shift operators

Branch instructions

- The only form of addressing for branch instructions is immediate
- Instruction contains 24 bit value
 - Shifted 2 bits left so that the address is on a word boundary
 - Effective range +/-32MB from from the program counter

LDMxx r10, {r0, r1, r4} STMxx r10, {r0, r1, r4}

+

Figure 13.4 ARM Load/Store Multiple Addressing

ARM Load/Store Multiple Addressing

Instruction Formats

Define the layout of the bits of an instruction, in terms of its constituent fields Must include an opcode and, implicitly or explicitly, indicate the addressing mode for each operand

For most instruction sets more than one instruction format is used

Instruction Length

- Most basic design issue
- Affects, and is affected by:
 - Memory size
 - Memory organization
 - Bus structure
 - Processor complexity
 - Processor speed
- Should be equal to the memory-transfer length or one should be a multiple of the other
- Should be a multiple of the character length, which is usually 8 bits, and of the length of fixed-point numbers

Allocation of Bits

- Number of addressing modes
- Number of operands
- Register versus memory
- Number of register sets
- Address range
- Address granularity

PDP-8 Instruction Format

	Service .	Memor	y Refere	nce Inst	ructions			1. 25 1	
Opcode	D/I	Z/C			Di	splacem	ent		
0 2	3	4	5	1395			133		11
THE OF A STATES		11-2-2-5	Shines.		11 - 20	210		11-2	5 (S)10
		Inpu	t/Outpu	t Instru	ctions			1.00	
1 1 0			De	vice				Opcode	
0 2	3	1816	200 20		1	8	9	1	11
				5149 L				1.5	
C		Registe	r Refere	nce Inst	ructions	創たい	$W_{i,j} = \{D_{i,j}\}$	HE VICE	A BUE
Group I Microinstruct	uons	CLA	CU	CMA	CML	DAD	DAL	Dew	IAC
	2	CLA	CLL 5	CMA	CML 7	RAR o	KAL	Dow	IAC
0 1 2	2	4		0	· · · /	. 0	9	10	11
Group 2 Microinstruct	tions	1. 2. 2.		5.000	11-1-2.2				
1 1 1 1	1	CLA	SMA	\$74	SNI	Dee	OSP	шт	0
0 1 2	3	I CLA	5 SIVIA	6	7	8	OSK	10	11
0 1 2	2	4		0		0		10	11
Group 3 Microinstruct	tions	10 13	1. S. 1.	1.1			a - Te		20.00
1 1 1	1	CLA	MOA	0	MOL	0	0	0	1
0 1 2	. 3	4	5	6	7	8	9	10	11
52.500	135.2.		1. 3. 4	133.2			1 23-1		
D/I = Direct/Indire	ct addres	s	Contrasts	IAC :	= Increm	nent AC	cumulat	or	s rona
Z/C = Page 0 or Cu	irrent pag	e		SMA = Skip on Minus Accumulator					
CLA = Clear Accum	ulator	「おい思	SZA = Skip on Zero Accumulator						
CLL = Clear Link		223	110 20	SNL = Skip on Nonzero Link					
CMA = CoMplement	t Accumu	lator	RSS = Reverse Skip Sense						
CML = CoMplement	t Link	18 13		OSR = Or with Switch Register					1
RAR = Rotate Accur	multator I	Right		HLT :	= HaLT			12 20 3	ALC: N
RAL = Rotate Accu	mulator I	eft	1	MOA :	= Multir	olier Out	otient int	to Accun	ulator
BSW = Byte SWan		Lanse.	3 300	MOL = Multiplier Quotient Load					

Figure 11.5 PDP-8 Instruction Formats

PDP-10 Instruction Format

Opcode	Opcode Register I		Memory Address
0 8	9 12	14 17	18 35

I = indirect bit

+

Figure 11.6 PDP-10 Instruction Format

Variable-Length Instructions

- Variations can be provided efficiently and compactly
- Increases the complexity of the processor
- Does not remove the desirability of making all of the instruction lengths integrally related to word length
 - Because the processor does not know the length of the next instruction to be fetched a typical strategy is to fetch a number of bytes or words equal to at least the longest possible instruction
 - Sometimes multiple instructions are fetched

PDP-11 Instruction Format

Numbers below fields indicate bit length

Source and Destination each contain a 3-bit addressing mode field and a 3-bit register number

FP indicates one of four floating-point registers

R indicates one of the general-purpose registers

CC is the condition code field

Figure 13.7 Instruction Formats for the PDP-11

VAX Instruction Examples

1 G . 1	Hexadecimal Format	Explanation	Assembler Notation and Description			
	$\begin{array}{c} 8 \text{ bits} \\ \hline 0 5 \end{array}$	Opcode for RSB	RSB Return from subroutine			
	D 4 5 9	Opcode for CLRL Register R9	CLRL R9 Clear register R9			
	$ \begin{bmatrix} B & 0 \\ C & 4 \\ 6 & 4 \\ 0 & 1 \\ A & B \\ 1 & 9 \end{bmatrix} $	Opcode for MOVW Word displacement mode, Register R4 356 in hexadecimal Byte displacement mode, Register R11 25 in hexadecimal	MOVW 356(R4), 25(R11) Move a word from address that is 356 plus contents of R4 to address that is 25 plus contents of R11			
	C 1 0 5 5 0 4 2 D F	Opcode for ADDL3 Short literal 5 Register mode R0 Index prefix R2 Indirect word relative (displacement from PC) Amount of displacement from PC relative to location A	ADDL3 #5, R0, @A[R2] Add 5 to a 32-bit integer in R0 and store the result in location whose address is sum of A and 4 times the contents of R2			

Figure 13.8 Examples of VAX Instructions

x86 Instruction Format

0 or 1

bytes

0 or 1

0 or 1

0 or 1

Figure 13.9 x86 Instruction Format

ARM Instruction Formats

147	31 30 29 28	27	26	25	24	23	22	21	20	19 18 17 16	15 14 13 12	11 10 9 8	7	6 5	4	3 2 1 0
data processing immediate shift	cond	0	0	0	0	opc	od	le	S	Rn	Rd	shift amou	Int	shift	0	Rm
data processing register shift	cond	0	0	0	0	ppc	od	le	S	Rn	Rd	Rs	0	shift	1	Rm
data processing immediate	cond	0	0	1	0	ppc	od	le	S	Rn	Rd	rotate		im	me	diate
load/store immediate offset	cond	0	1	0	Р	υ	В	W	L	Rn	Rd	in	nm	ediate	2	
load/store register offset	cond	0	1	1	P	υ	В	W	L	Rn	Rd	shift amou	Int	shift	0	Rm
. load/store multiple	cond	1	0	0	P	U	s	W	L	Rn		regis	ter	list	10.00	1. Sec.
branch/branch with link	cond	1	0	1	L		1.5	1			24-bi	it offset				11. 11.

- S = For data processing instructions, signifies that the instruction updates the condition codes
- S = For load/store multiple instructions, signifies whether instruction execution is restricted to supervisor mode
- P, U, W = bits that distinguish among different types of addressing_mode
- B = Distinguishes between an unsigned byte (B==1) and a word (B==0) access
- L = For load/store instructions, distinguishes between a Load (L==1) and a Store (L==0)
- L = For branch instructions, determines whether a return address is stored in the link register

Figure 13.10 ARM Instruction Formats

Examples of Use of ARM Immediate Constants

ror #0 - range 0 through 0x000000FF - step 0x00000001

ror #8 - range 0 through 0xFF000000 - step 0x01000000

ror #30 - range 0 through 0x000003FC - step 0x00000004

Figure 13.11 Examples of Use of ARM Immediate Constants

Thumb Instruction Set

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent

Assembler

- Machines store and understand binary instructions
- E.g. N=I+J+K initialize I=2, J=3, K=4
- Program starts in location 101
- Data starting 201
- Code:
- Load contents of 201 into AC
- Add contents of 202 to AC
- Add contents of 203 to AC
- Store contents of AC to 204
- Tedious and error prone

Improvements

Use hexadecimal rather than binary

- Code as series of lines
 - Hex address and memory address
- Need to translate automatically using program

Add symbolic names or mnemonics for instructions

- Three fields per line
 - Location address
 - Three letter opcode
 - If memory reference: address

Need more complex translation program

Program in: Binary

Hexadecimal

Address		Cont	tents			Address	Contents
101	0010	0010	101	2201		101	2201
102	0001	0010	102	1202		102	1202
103	0001	0010	103	1203		103	1203
104	0011	0010	104	3204		104	3204
201	0000	0000	201	0002		201	0002
202	0000	0000	202	0003		202	0003
203	0000	0000	203	0004		203	0004
204	0000	0000	204	0000		204	0000
					A COLOR MANAGEMENT AND		

Symbolic Addresses

- First field (address) now symbolic
- Memory references in third field now symbolic
- Now have assembly language and need an assembler to translate
- Assembler used for some systems programming
 - Compliers
 - I/O routines

⁺ Symbolic Program

Address	Instruction	I
101	LDA	201
102	ADD	202
103	ADD	203
104	STA	204
201	DAT	2
202	DAT	3
203	DAT	4
204	DAT	0

⁺ Assembler Program

Label	Operation	Operand
FORMUL	LDA	Ι
	ADD	J
	ADD	K
	STA	Ν
Ι	DATA	2
J	DATA	3
К	DATA	4
Ν	DATA	0

Assembler

Address		Cont	ents			Address	Contents
101	0010	0010	101	2201		101	2201
102	0001	0010	102	1202		102	1202
103	0001	0010	103	1203		103	1203
104	0011	0010	104	3204	and an arriver	104	3204
					N. B. S. Martin		
201	0000	0000	201	0002	1.1.1	201	0002
202	0000	0000	202	0003		202	0003
203	0000	0000	203	0004	20 23 C.L.	203	0004
204	0000	0000	204	0000		204	0000

(a) Binary program

(b) Hexadecimal program

and the second se			and the second se	and the second sec	the second se	and the second se
Address	Instruction			Label	Operation	Operand
101	LDA	201		FORMUL	LDA	Ι
102	ADD	202			ADD	J
103	ADD	203			ADD	K
104	STA	204	S. Andrewski		STA	Ν
			+1			
201	DAT	2		I	DATA	2
202	DAT	3	Contactor.	J	DATA	3
203	DAT	4		K	DATA	4
204	DAT	0		N	DATA	0

(c) Symbolic program

(d) Assembly program

Figure 11.13 Computation of the Formula N = I + J+ K