SEN361 Computer Organization

Prof. Dr. Hasan Hiiseyin BALIK
(6" Week)

o

Outline | |
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Ihstruction.Sets: ,Add.ressing Modes, and
Formats

3.3 Processor Structure and Function
3.4 Reduced Instruction Set Computers

3.9 Instruction-Level Parallelism and Superscalar
Processors '

-+

3.1 Instruction Setsﬁ Characferistics émd
Functions

3.1 Outline

O Maéhine Instfuction Characterisﬁcs
m Types of Operands |

m Intel x86 and Arm Data Types

m Types of Operations

m Intel x86 and ARM Operatioh Types

+ _ _ -
Machine Instruction
Characteristics

m The operation of the processor is determined by the
instructions it executes, referred to as machine instructions ox
computer instructions | | |

m The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set

m Each instruction must contain the information required by the
- processor for execution

Elements of a Mach_ine Inst_ruction

VN

Operation code Source operand
(opcode) reference

* Specifies the operation » The operation may
to be performed. The involve one or more
operation is specified source operands, that
by a binary code, is, operands that are
known as the operation inputs for the operation
code, or opcode

%

Result operand Next instruction
reference reference
» The operation may * This tells the processor

produce a result where to fetch the next
instruction after the

execution of this
instruction is complete

Instruction Cycle State Diagram

Instruction - Operand - Operand
fetch fetch store
Multiple Multiple
operands R results
Instruction Instruction Operand Data - Operand
address opeération = address - —p address
calculation decoding calculation precalios calculation

Return for string

Instruction complete, x veokne duin

fetch next instruction

Figure 12.1 Instruction Cycle State Diagram

Source and result operands can be
1n one of four areas:

3) Processor register

m A processor contains one or .

1) Main or virtual memory more registers that may be

m As with next instruction referenced b'y machine
references, the main or virtual instructions.
memory address must be .
supplied : = If more than one register

exists each register is

assigned a unique name or

number and the instruction
2) I/0 device must contain the number of

m The instruction must specify the desired register

the I/O module and device for 4) Immediate
the operation. If memory- |
mapped I/0 is used, this is

just another main or virtual
memory address

m The value of the operand is
contained in a field in the
instruction being executed

+

Instruction Representation

m Within the computer each instruction is represented by a

sequence of bits

m The instruction is divided into fields, corresponding to the

constituent elements of the instruction

4 bits

. 6 bits

6 bits.

Opcode

Operand Reference

Operand Reference

16 bits

~ Figure 12.2 A Simple Instruction Format

v Instri.lcti_on Types

/° Arithmetic instructions provide
computational capabilities for
processing numeric data

* Logic (Boolean) instructions
operate on the bits of a word as
bits rather than as numbers,
thus they provide capabilities
for processing any other type
of data the user may wish to
employ

» Test instructions are used to test
the value of a data word or the
status of a computation

» Branch instructions are used to
branch to a different set of
instructions depending on the
decision made

Data

processing

Control

N

* Movement of data into
or out of register and or
memory locations

Data o
storage

Data o
movement N

 I/0 instructions are
needed to transfer
programs and data into
memory and the results
of computations back
out to the user

+
Number of Addresses

SUB Y. .A.B Y+—A-B
MPY T.D.E T—DxE
ADD T.T.C T—T+C
DIV Y. Y. T Y+—Y¥Y~+T

- Instruction Comment !
{a) Three-address instructions i
LOAD D AC<D !
MPFY E AC+— ACxE
Instruction Comment 1ADD C AC— AC+C
MOVE Y. A Y — A | STOR Y Y — AC
SUB Y.B Y~—Y-B LOAD A AC A
MOVE T.D T—D SUB B AC-—AC-B
MPY T.E T—TxE DIV Y AC—AC=Y
ADD T.C T—T+0C STOR Y Y o— AC
DIV Y. T Y—Y¥Y=T
(b Two-address instructions ' [l One-address instructions
A-B

Figm;e 123 Programs to Execute Y= —————
- C+(DxE)

Utilization of Instruction Addresses
- (Nonbranching Instructions)

Number of Addresses Symbaolic Representation Interpretation

3 OF A B.C A~ BOPC
2 OF ALB A~ AOFPE
1 OF A AC =— ACOF A
0 CF T+ (T-1)OPT

AC = accumulator

T = top of stack

{T=1}) = second element of stack

A.B.C = memory or register locations

Instruction Set Design

Very complex because it affects so many aspects of the computer system

b

Defines many of the functions performed by the processor

Programmer’s means of controlling the processor

h.

Operation repertoire

* How many and which
operations to provide and
how complex operations
should be

Fundamental design issues:

Data types

 The various types of data
upon which operations are
performed

Instruction format

« Instruction length in bits,
number of addresses, size
of various fields, etc.

Registers

* Number of processor
registers that can be
referenced by instructions
and their use

Addressing

* The mode or modes by
which the address of an
operand is specified

- Types of Operands

|
Numbers

m All machine languages include numeric data types

O Numbers stored in a computer are limited:
m Limit to the magnitude of numbers representable on a machine
m In the case of floating-point numbers, a limit to their precision

m Three types of numerical data are common in computers:
m Biné.ry integer or binary fixed poinf |
m Binary floating point
m Decimal

m Packed decimal

m Each decimal digit is represented by a 4-bit code with two digits
stored per byte

m To form numbers 4-bit codes are strung together, usually in mu1t1p1es
of 8 bits : :

Characters

m A common form of data is text or character strings

m Textual data in character form cannot be easiiy stored or
transmitted by data processing and communications systems
because they are designed for binary data

m Most commonly used character code is the International
Reference Alphabet (IRA) | |

m Referred to in the United States as the American Standard Code
for Information Interchange (ASCII)

m Another code used to encode characters is the Extended
Binary Coded Decimal Interchange Code (EBCDIC)

m EBCDIC is used on IBM mainframes

. |
Logical Data

m An n-bit unit consisting of n 1-bit items of data, each item
having the value O or 1

m Two advantages to bit-oriented view:

. m Memory can be used most efficiently for storing an array of
Boolean or binary data items in which each item can take on only
the values 1 (true) and O (false)

= To manipulate the bits of a data item

m If floating-point operations are implemented in software, we -
need to be able to shift significant bits in some operations

m To convert from IRA to packed decimal, we need to extract the
rightmost 4 bits of each byte

Data Type

Description

General

Integer

Ordinal

Unpacked binary coded
decimal (BCD)

Facked BCD

Mear pointer

Bvte, word (16 hits), doubleword (32 bits), quadword (64 bits),
ind double quadword (128 bits) locations with arbitrary binary
contents.

A signed binary value codntained in a byte, word, or doubleword,
using twos complement representation.

An unsigned integer contained in a byte, word. or doubleword.
A representation of a BCD digit in the range 0 through 9, with one
digit in each byte.

Facked byte representation of two BCD digits; value in the range O
o 99,

A 16-bit, 32-bit, or 64-bit effective address that represents the
offset within a segment. Used for all pointers in a nonsegmented
memory and for references within a segment in a segmentad
MEmMOory.

Far pointer

Bit field

Bit string

Byvie string

Floating point
Facked SIMD (single

instruction, multiple data)

A logical address consisting of a 16-bit segment selector and an
offset of 16, 32, or 64 bits. Far pointers are used for memory
references in a segmented memaory model where the identity of a
segment being accessed must be specified explicitly.

A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit
position of any byte and can contain up o 32 bits.

A contiguous sequence of bits, containing from zero to 2,, - 1
bits.

A contiguous sequence of bytes, words, or doublewords,
containing from zero w 2., - | bytes.

See Figure 124,

Facked 64-bit and 128-bit data types

x86 Data
Types

Byte unsigned integer

f, =0
I:I Word unsigned integer
15 0

| Doubleword unsigned integer

| Quadword unsigned integer

twos -unmpD Byte signed integer
T D

Word unsigned integer

15]

x86 Numeric Data

twos complement I Doubleword unsigned integer

Formats - - -

twos complement | Quadward unsigned integer

-]
Cat

sign bit

Single precision
floating point

" Cxp I significand I
3l

: sizn bit : il
" | P—— I Double precision

_ i floating point

63 51 : o
sigm hit integer hit g4
— Diouble extended precision

" exponent " significand I ﬂmtmg]:I{]i]ﬂ

L] 63 0

- Figure 12.4 x86 Numeric Data Formats

Single-Instruction-Multiple-Data
(SIMD) Data Types

m Introduced to the x86 architecture as part of the extensions of the
instruction set to optimize performance of multimedia applications

m These extensions include MMX (multimedia extensions) and SSE
(streaming SIMD extensions)

m Data types:
m Packed byte and packed byte integer
Packed word and packed word integer
Packed doubleword and packed doubleword integer
Packed quadword and packed quadword integer

Packed single-precision floating-point and packed double-precision
floating-point ; ' '

ARM Data Types

ARM processors support
data types of:

*8 (byte)
+16.(halfword)
*32 (word) bits in length

All three data types can Alignment checking
also be used for twos «When the appropriate control
complement signed bit is set, a data abort signal
= indicates an alignment fault for
REOCeLs attempting unaligned access
For all three data types -

‘Unaligned access

*When this option is enabled,

. A the processor uses one or
supported in which the more memory accesses to

val_ue represents an : : _generate the required transfer
unsigned, nonnegative of adjacent bytes transparently
integer to the programmer

an unsigned
interpretation is

ARM EndianSupport @1

Data bvtes
in memory
(ascending address values
from byte 0 to byte 3)

»| Byte3 |l

» Byte 2 =

| Byte 1 |=

— | Byte 0 jf—

il ¥ 4 vy 0 1y ¥ ¥ ¥y 0

Bvte 3 | Byte2 | Bytel | Bytel Byte) | Bytel | Byvtel | Byte 3
ARM register ARM register
program status register E-bit = () - program status register E-hit =1

Figure 12.5 ARM Endian Support - Word Load/Store with E-bit

Type Operation Mame Description

Mowe [transfer) Transter word or block from source to destination
Store Transfer word from processor o memory
Lioad (fetch) Transfer word from memory to processaor
- Exchange Swap contents of source and destination
Drata Transter
Clear (reset) Transter ward of Us to destination
HSet Transter word of 1s to destination
Push Transfer word from source to top of stack
Pop Transfer word from top of stack to destination
Addd Compute sum of tao operands
Subtract Compute difference of two operands
Common Multiply Compute product of teo operands
° Davide Compute quotient of two operands
Instruction Set Rttt
Absolute Keplace operand by its absolute value

Op era.tio ns Megate Change sign of operand

Increment Add 1 to operand

Decrement Subtract 1 from operand

AR Pertorm logical AN

(page 1 Of 2) L4 Pertorm logical (R

NOT (complement) Pertorm logical MY

Exclusive-OR Pertorm logical XOR

Test Test specified condition; set flagis)y based on outcoms
Logical - ; -

LCompare Make logical or anthmetic companson of two or more

operands; set flagls)y based on outcoms

Set Control Class of mstructions o set controls for protection
Vanables purpnses, intermupt handling, timer control, eto.
Shutt Lett (right) shitt operand, introducing constants at end

Botate Lett (right) shitt operand, with wraparound end

Type

Operation Name

Deescription

Transter of Control

Common
Instruction
Set

Operations

Jump i hranch)

Unconditional transter; load PC with specified address

Jump Conditional

Test specified condition; either load PC with specified
address or do nothing, based on condition

Jump to Subroutine

Place current program control information in known
location; jump to specified address

Keturn Replace contents of PC and other register from known
location

Execute Fetch operand from specified location and execute as
mstruction; do not modiby PC

Skip Increment PC to skip next instroction

Skip Conditional Test specified condition; either skip or do nothing based
on condition

Hali Stop program execution

Wart {hold) Stop program execution; test specitied condition

repeatedly; resume execution when condition 1s satisfied

Mo operation

Mo operation 15 performed, but program execution 15
coniimued

(page 2 of 2)

Input {read)

Transter data trom specified 10 port or device to
destination {e.g., Main MeMory OF Processor register)

Chutput (wrike)

Transter data tfrom specibied source to L0 port or device

Input/Cutput start 140 Transter mstructions to W0 processor (o initate 100
peration
Test 1O Transter status information from IO system to specified
destination
Translate Translate values in a section of memory based on a table
. of comespondences
Conversion
Convert Convert the contents of a word from one form to another

{e.g., packed decimal to binary)

Processor Actions for Various Types of Operations

Data Transfer

Transfer data from one location to another

If memory is involved:
Determine memary address
Perform virtual-to-actual-memaory address transformation
Check cache
Initiate memaory read/write

May involve data transfer, before and/or after

Arithmetic Perform function in ALU
set condition codes and flags
Logical Same as arithmetic

Conversion

Similar to arithmetic and logical. May involve special logic to
perform conversion

Transfer of Control

Update program counter. For subroutine call/return, manage
= (=}
arameter passing and linkape
= £

/0

Issue command to 'O module

If memory-mapped /0, determine memory-mapped address

Data Transfer

Most fundamental type of

machine instruction

Must specify:

» Location of the source and
destination operands

» The length of data to be
transferred must be indicated

* The mode of addressing for each
operand must be specified

Examples of IBM EAS/390 Data Transfer Operations

(peration Number of Bits
Mnemonic Name Transferred Description

L Load 32 Transfer from memaory to register

LH Load Halfword 16 Transfer from memaory to register

LE Load j2 Transfer from register to register

LER Load (Short) 32 Transfer from floating-point register to
floating-point register

LE Load (Short) 32 Transfer from memaory to floating-point
register

LDE Load (Long) B4 Transfer from floating-point register to
floating-point register

LD Load (Long) td Transfer from memaory to floating-point
register

5T Store i2 Transfer from register to memaory

STH store Halfword 16 Transfer from register to memaory

STC Store Character B Transfer from register to memaory

STE store (Short) j2 Transfer from floating-point register to
memaory

STD store (Long) B4 Transfer from floating-point register to
MEmary

m Most machines provide the basic arithmetic
operations of add, subtract, multiply, and divide

m These are provided for signed integer (fixed-
point) numbers

m Often they are also provided for floating-point
and packed decimal numbers

m Other possible operations include a variety of

single-operand instructions: : Arlthmetlc
Absolute : |

m Take the absolute value of the operand

Negate

m Negate the operand
Increment

m Add 1 to the operand
Decrement

m Subtract 1 from the operand

Logical
F) NOTF (PANDQ | FPORQ | PXORQ P=()
{ 0 | 0 0 0 |
{0 | | {0 | |]
I {0 L (I | N
| | 0 | | { |

Table 12.6 Basic Logical Operations

(a) Logical right shift

ERTTTTTT

(b) Logical left shift

() Arithmetic right shift

Shift and Rotate

Operations

(f) Left rotaie

Figure 12.6 Shift and Rotate Operations

Input Chperation Result
101001 10 Logical right shift (3 bits) 00010100
101001 10 Logical left shift (3 bits) 001 10000
101001 10 Arithmetic right shift (3 bits) 11110100
101001 10 Arithmetic left shift (3 bits) 101 1ODO0
101001 10 Right rotate (3 bits) 11010100
101001 10 Left rotate (3 bits) 00110101

Examples of Shift and Rotate
Operations

Input/Output

m Variety of approaches taken:
m Isolated programmed I/O
m Memory-mapped programmed I/O
N DMA | |

- m Use of an I/O processor

m Many implementations provide only a few I/O instructions,
with the specific actions specified by parameters, codes, or
command words |

S\

Sy_st_em Control ; _

Instructions that can be executed only while the processor is in a
certain privileged state or is executing a program in a special
privileged area of memory

/Typically these instructions are reserved for the use of the
operating system

v :
Examples of system control operations:

A system control instruction An instruction to read or Access to process control
may read or alter a control modify a storage protection blocks in a
register key multiprogramming system

Transfer of Control

m Reasons why transfer-of-control operations are required:

m [t is essential to be able to execute each instruction more than
once

= Virtually all programs involve some decision making

m It helps if there are mechanisms for breakmg the task up into
- smaller pieces that can be worked on one at a time

m Most common transfer-of-control operations found in
instruction sets:

m Brahch
--m SKkip

m Procedure call

Memory

address Instruction
204
.2 :
— 22 SUBX,Y
BranCh 203 s BRZ 211
3 Unconditional | . - ;
Instruction il . . Conditional
< : branch
— 2110 BR 202
211 : oLt
L]
225 : BRE R1,R2, 235 :
L] L]
. . Conditional
. . branch
235 : - T T,

Figure 12.7 Branch Instructions

Skip Instructions [

Typically implies that one
instruction be skipped,
thus the implied address
equals the address of the
next instruction plus one
instruction length

Includes an implied

address

l'

_ Because the skip

instruction does not Example is the
increment-and-skip-if-

zero (ISZ) instruction

require a destination
address field it is free to
do other things

Procedure Call Instructions

m Self-contained computer program that is incorporated into a
larger program

m At any point in the program the procedure may be invoked, or called

m Processor is instructed to go and execute the entire procedure and
then return to the point from which the call took place

m Two principal reasons for use of procedures:
= Economy : :
m A procedure allows the same piece of code to be used many times
= Modularity

m Involves two basic instructions:

m A call instruction that branches from the present location to the
procedure

m Return instruction that returns from the procedure to the place from
which it was called

Nested
Procedures

Addresses
4000

4100

4101

4500

4600
4601

4650

4651

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

* (a) Calls and returns

Main

Program

Procedure

Procl

Procedure

Proc2

i_
N

(b) Execution sequence

Figure 12.8 Nested Procedures

Use of Stack to'Implement Nested o

Procedures

46l 1 _ 4651
4101 4101 4101 | 4101 | 4101
] i - -] - i L] i =
{a Inbtial stack i) After (¢} Lnitkal (d} After el After iy After (g) After
contents CALL Procl CALL Proc2 RETURN CALL Proc2 RETURN RETURN

Figure 12.9 Use of Stack to Implement Nested Procedures of Figure 12.8

Instruction

Drescriptien

Data Movement

MO Mowve operand. between registers or between register and memaory,

PLSH Push operand onto stack.

PLIsHA Push all registers on stack.

MO SX Move byte, word, dword, sign extended. Moves a byte to a word or a word to a
doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value
to the destination cperand.

XLAT Tabkle lookup translation. Beplaces & byte in AL with a byte trom a user-coded
translation table. When XLAT 15 executed, AL should have an unsigned mdex to the
table. XLAT changes the contents of AL trom the table index to the table entry.

I, OUT Input, cutput operand from IO space.

Arithmetic

Al Add operands.

SLTH Subtract operands.

MLUIL Unsigned integer multiphication, with byte, word, or double word operands. and
wiord, doubleword, or quadword result.

I R Signed divide.

Laogical

AND AMND operands.

BlS Bit test and set. Operates onoa bt feld operand. The instruction copies the cument
value of o bit to flag CF and sets the original bt to 1.

BiEF Bit scan torward. Scans a word or doubleword for a 1-bit and stores the number of

the tirst 1-bit into a register.

SHL/SHE

Shitt logical lett or nght.

SALMSAR

Shirtt amthmetic lett or nght.

ROLROE Botate left or nnght.

SETcc Sets 4 byte to zero or one depending on any of the 16 conditions defined by status
flags.

Control Transfer

InE Unconditional jump.

CALL Transter control to another location. Betore transter, the address of the mnstruction
tellowing the CALL 1= placed on the stack.

JESLL Jump of equal’zero.

LOOPE O

Loops if equalfzers. This 1s o conditional jump usimg a value stored inoregister BCX.
The mstruction first decrements ECX before testing ECX for the branch condition.

INT/ANTO

Interrupt/ Intermapt of overtlow . ‘Iranster control to an imtermupt service routine

x86
Operation
Types (With
Examples of

Typical
Operations)

(page 1 of 2)

String Operations

MOV S Mowve byte, word, dword stnng. The instruction operates on one element of a stnng,
indexed by registers BE5l and EDL. After each sinng operation. the registers are
automatically meremented or decremented o point to the next element of the string.

LS Lioad byte, word, dword of stnng.

High-Level Language Support

ENTER Creates a stack frame that can be used to implement the rules of a block-stmciured
high-level language.

LEAVE Rewverses the action of the previous ENTER.

BOLIMD Check array bounds. Venties that the value in operand 1 s within lower and upper
hrmits. The limits are m two adjpcent memory locations referenced by operand 2. An
imtermupt cecurs 1f the value 15 out of bounds. This instruction s used to check an
array index.

Flag Control
510 Set Carmry flag.
LAHE Load AH register from flags. Comes S5F, £ZF, AF. PE. and CF biis into A register.
Segment Kegister

LIDs Load pomter mio DS and another register.
system Control

HLT Halt.

LK Asserts 4 hold on shared memory so that the Pentium has exclusive use of it durnng
the mmstruction that immediately follows the LUOCK.

ESC Processor extension escape. An escape code that mdiwates the succeeding
instructions are to be executed by & numernic coprocessor that supports high-
precision integer and floating-point calculations.

WAIT Want until BUSY # negated. Suspends Pentium program execution until the
processor detects that the BUSY pin 15 inactive, indicating that the numeric
coprocessir has fimished execution.

Protection
SO0 Store global descnptor table.
LsL Load segment hmit. Loads a user-specified register with a segment limat.

VEREWVERW

Venty segment for reading/writing.

Cache Management

IxYD Flushes the intemal cache memory .
WHIMYD Flushes the intemal cache memory atter wnting dirty lines to memory.
1Y LPG Invalidates a translation leokaside bufter (TLH) entry.

x86
Operation
Types (With
Examples of
Typical
Operations)

(page 2 of 2)

+
Call/Return Instructions

m The x86 provides four instructions to support procedure call/return:
= CALL
= ENTER
= LEAVE
= RETURN

m Common means of implementing the procedure is via the use of stack
frames

m The CALL instruction pushes the current instruction pointer value onto
the stack and causes a jump to the entry point of the procedure by
- placing the address of the entry point in the instruction pointer

m The ENTER instruction was added to the instruction set to provide direct
support for the compiler

x86 Status Flags

Status Bit MName Description

CF Carry Indicates carmying or borrowing out of the left-most bit position
following an arithmetic operation. Also modified by some of
the shift and rotate operations.

P'F Parity Parity of the least-significant byte of the result of an arithmetic
or logic operation. | indicates even parity; (0 indicates odd
parity.

AF Auxiliary Carry | Represents carrying or borrowing between half-bytes of an 8-bit
arithmetic or logic operation. Used in binary-coded decimal
arithmetic.

LF £ern Indicates that the result of an arithmetic or logic operation is 0.

5F H1gn Indicates the sign of the result of an arithmetic or logic
operation.

OF Overflow Indicates an arithmetic overflow after an addition or subtraction

for twos complement arithmetic.

Svmbaol Condition Tested Comment
A, NBE CF=0 AND ZF=) Above; Not below or equal (greater than,
unsigned)
AE, NB. NC CF=0 Above or equal; Not below (greater than or
equal., unsigned): Not carry
B.NAE.C CF=1 Below: Not above or equal (less than,
unsigned); Carry set
BE, NA CF=1 OR ZF=1 Below or equal; Not above (less than or
equal. unsigned)
E,Z LF=1 Equal: Zero (signed or unsigned)
G.NLE [(53F=1 AND OF=1) OR {5F=0 | Greater than; Not less than or equal (signed)
and OF=0)] AND [ZF=0]
GE. NL (5F=1 AND OF=1) OR {5F=0 | Greater than or equal; Not less than (signed)
AND OF=()
L. NGE (5F=1 AND OF=) OR (5F=0 | Less than: Not greater than or equal (signed)
AND OF=1)
LE, NG (3F=1 AND OF=) OR {5F=0 | Less than or equal; Not greater than (signed)
AND OF=1) OR (ZF=1)
MNE. NZ L=l Mot equal; Mot zero (signed or unsigned)
MO OF=0 No overflow
N5 SF=l Not sign (not negative)
NP, O PF=D Not parity: Parity odd
0 OF=1 Overflow
F FF=1 Parity; Parity even
5 Sk=1 5ign (negative)

x86
Condition
Codes for
Conditional
Jump and
SETcc
Instructions

+
x86 Single-Instruction, Multiple-
Data (SIMD) Instructions

m 1996 Intel introduced MMX technology into its Pentium
product line

m MMX is a set of highly optimized instructions for multimedia tasks

E V1deo and audio data are typ1ca11y composed of large arrays
- of small data types

E Three new data types are defmed in MMX
m Packed byte
m Packed word

- m Packed doubleword

m Each data type is 64 bits in leng’rh and consists of multiple |
smaller data fields, each of which holds a fixed-point integer

Category

Instruction

Dreseription

Arithmetic

Comparison

Conversion

Laxgical

Shift

PADD [H, W, I

Paralle]l add of packed eight bytes, four 16-bit words, or two 32-bat
doublewords, with wraparound.

FADDS [B. W]

Add wiath saturation.

PADDUS [B, W]

Audd unsigmed with saturaticn

PSUE [B, W, I¥

Subtract with wraparound.

PSUBS [B. W]

Subtract with saturation.

PSUBLS [B.W]

Subtract unsigned with saturation

PRAULHW Paralle]l multiply of four signed 16-bit words, with high-order 16
hits of 32-hit result chosen.

PRIULLW Parallel multiply of four signed 16-bit words, with low-order 16 bits
of 32-hit result chosen.

PRADIMWD Paralle]l multiply of four signed 16-bit words; add together adjacent

pairs of 32-hit results.

PCMPEQ} [B, W, D]

Paralle] compare for equality: result is mask of 15 if true or Os if
false.

PCMPGT [B, W, I}

Parallel compare for greater than: result is mask of 1s if tree or Os if
false.

PACKLUSWH

Pack words into bytes with unsigned saturation.

PACKSS [WH, DW]

Pack words into bytes. or doublewords into wonds, with signed
saburation.

PUNPCEH [BW, W,
DO

Parallel unpack (interleaved merge) high-order bytes, words, or
doublewords from MMX register.

PUNPCEL [BW, W,

Parallel unpack (interleaved merge) low-order bytes, words, or

)] doublewords from MMX register.

PAMND fd-hit bitwise logical AND

PIMNINN fd-hit bitwise logical AND NOT

POR fd-hit bitwise logical OR

PXOR fed-hit hitwise logical XOR

PSLL W, v, (] Parallel logical left shift of packed words, doublewords, or

quadword by amoeunt specified in MMX register or immediate
value.

PSRL [W. . 0]

Parallel logical right shift of packed words, doublewords, or
quadword.

PSRA [W. D]

Parallel arthmetic right shift of packed words, doublewords. or
quadwiord.

[rata Transfer

MOV [0, Q]

Move doubleword or quadword toffrom MM register.

State Mgl

EMMS

Empiv MMX state (empiy FP registers tag biis).

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword
(Q)], the data types are indicated in brackets.

MMX
Instruction
Set

ARM Op'era_tion Types

Load and store Branch
instructions instructions

Parallel addition
and subtraction
instructions

Multiply
instructions

Status register
access
instructions

Data-processing
instructions

Extend
instructions

Code Svmbaol Condition Tested Comment
ILLLL EQ) LZ=1 Equil
(001 ME LZ=0 Mot equal
0010 CS5/HS C=1 Carrv setunsigned higher or same
0011 CCLO C=0 Carry clear/unsigned lower
0100 il N=1 Minus/negative
0101 FL N=10 Flus/positive or zern
0110 V5 V=1 Overflow
0111 VC V=0 Mo overflow
| 000 HI C=1ANDZ=0 Unsigned higher
| (M)] LS C=00RZ=1 Unsigned lower or same
1010 GE N=V¥ Signed greater than or equal
[(N=1ANDV =1)
OR (N=0ANDY =0)
011 LT NzV Signed less than
[((N=1ANDY =0)
OR (N=0AND YV = 1)]
| 100 GT (£Z=0) AND (N = V) Signed greater than
| 101 LE (Z=110R{(N=V) Signed less than or equal
| 110 AL Always {unconditional)

This instruction can anly be executed
unconditionally

ARM
Conditions
for
Conditional
Instruction
Execution

	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(6th Week)
	Outline
	Slide Number 3
	3.1 Outline
	Machine Instruction Characteristics
	Elements of a Machine Instruction
	Instruction Cycle State Diagram
	Source and result operands can be in one of four areas:�
	Instruction Representation
	Instruction Types
	Number of Addresses
	Utilization of Instruction Addresses (Nonbranching Instructions)
	Instruction Set Design
	Types of Operands
	Numbers
	Characters
	Logical Data
	x86 Data Types
	x86 Numeric Data Formats
	Single-Instruction-Multiple-Data (SIMD) Data Types
	ARM Data Types
	ARM Endian Support
	�Common Instruction Set Operations ��(page 1 of 2)
	� ��Common Instruction Set Operations ��(page 2 of 2)
	�Processor Actions for Various Types of Operations
	Data Transfer
	�Examples of IBM EAS/390 Data Transfer Operations
	Arithmetic
	Logical
	Shift and Rotate Operations
	�Examples of Shift and Rotate Operations
	Input/Output
	System Control
	Transfer of Control
	Branch �Instruction
	Skip Instructions
	Procedure Call Instructions
	Nested �Procedures
	Use of Stack to Implement Nested Procedures
	Slide Number 40
	Slide Number 41
	Call/Return Instructions
	x86 Status Flags
	 ��x86 �Condition Codes for Conditional Jump and SETcc Instructions
	x86 Single-Instruction, Multiple-Data (SIMD) Instructions
	MMX�Instruction�Set
	ARM Operation Types
	ARM Conditions for Conditional Instruction Execution

