
+

SEN361 Computer Organization

Prof. Dr. Hasan Hüseyin BALIK
(6th Week)

+

Outline
3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and
Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar
Processors

+

3.1 Instruction Sets: Characteristics and
Functions

+

3.1 Outline

 Machine Instruction Characteristics

 Types of Operands

 Intel x86 and Arm Data Types

 Types of Operations

 Intel x86 and ARM Operation Types

+
Machine Instruction
Characteristics

 The operation of the processor is determined by the
instructions it executes, referred to as machine instructions or
computer instructions

 The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set

 Each instruction must contain the information required by the
processor for execution

Elements of a Machine Instruction

Operation code
(opcode)
• Specifies the operation

to be performed. The
operation is specified
by a binary code,
known as the operation
code, or opcode

Source operand
reference
• The operation may

involve one or more
source operands, that
is, operands that are
inputs for the operation

Result operand
reference
• The operation may

produce a result

Next instruction
reference
• This tells the processor

where to fetch the next
instruction after the
execution of this
instruction is complete

Instruction Cycle State Diagram

Source and result operands can be
in one of four areas:
 3) Processor register

 A processor contains one or
more registers that may be
referenced by machine
instructions.

 If more than one register
exists each register is
assigned a unique name or
number and the instruction
must contain the number of
the desired register

2) I/O device
 The instruction must specify

the I/O module and device for
the operation. If memory-
mapped I/O is used, this is
just another main or virtual
memory address

1) Main or virtual memory
 As with next instruction

references, the main or virtual
memory address must be
supplied

4) Immediate
 The value of the operand is

contained in a field in the
instruction being executed

+
Instruction Representation

 Within the computer each instruction is represented by a
sequence of bits

 The instruction is divided into fields, corresponding to the
constituent elements of the instruction

Instruction Types

• I/O instructions are
needed to transfer
programs and data into
memory and the results
of computations back
out to the user

• Test instructions are used to test
the value of a data word or the
status of a computation

• Branch instructions are used to
branch to a different set of
instructions depending on the
decision made

• Movement of data into
or out of register and or
memory locations

• Arithmetic instructions provide
computational capabilities for
processing numeric data

• Logic (Boolean) instructions
operate on the bits of a word as
bits rather than as numbers,
thus they provide capabilities
for processing any other type
of data the user may wish to
employ

Data
processing

Data
storage

Data
movement Control

+
Number of Addresses

+
Utilization of Instruction Addresses

(Nonbranching Instructions)

Instruction Set Design

Fundamental design issues:

Operation repertoire
•How many and which

operations to provide and
how complex operations
should be

Data types
• The various types of data

upon which operations are
performed

Instruction format
• Instruction length in bits,

number of addresses, size
of various fields, etc.

Registers
•Number of processor

registers that can be
referenced by instructions
and their use

Addressing
• The mode or modes by

which the address of an
operand is specified

Programmer’s means of controlling the processor

Defines many of the functions performed by the processor

Very complex because it affects so many aspects of the computer system

Types of Operands

+
Numbers

 All machine languages include numeric data types

 Numbers stored in a computer are limited:
 Limit to the magnitude of numbers representable on a machine
 In the case of floating-point numbers, a limit to their precision

 Three types of numerical data are common in computers:
 Binary integer or binary fixed point
 Binary floating point
 Decimal

 Packed decimal
 Each decimal digit is represented by a 4-bit code with two digits

stored per byte
 To form numbers 4-bit codes are strung together, usually in multiples

of 8 bits

+
Characters

 A common form of data is text or character strings

 Textual data in character form cannot be easily stored or
transmitted by data processing and communications systems
because they are designed for binary data

 Most commonly used character code is the International
Reference Alphabet (IRA)
 Referred to in the United States as the American Standard Code

for Information Interchange (ASCII)

 Another code used to encode characters is the Extended
Binary Coded Decimal Interchange Code (EBCDIC)
 EBCDIC is used on IBM mainframes

+
Logical Data

 An n-bit unit consisting of n 1-bit items of data, each item
having the value 0 or 1

 Two advantages to bit-oriented view:
 Memory can be used most efficiently for storing an array of

Boolean or binary data items in which each item can take on only
the values 1 (true) and 0 (false)

 To manipulate the bits of a data item

 If floating-point operations are implemented in software, we
need to be able to shift significant bits in some operations

 To convert from IRA to packed decimal, we need to extract the
rightmost 4 bits of each byte

+
x86 Data Types

x86 Data

Types

+

x86 Numeric Data
Formats

+
Single-Instruction-Multiple-Data
(SIMD) Data Types

 Introduced to the x86 architecture as part of the extensions of the
instruction set to optimize performance of multimedia applications

 These extensions include MMX (multimedia extensions) and SSE
(streaming SIMD extensions)

 Data types:
 Packed byte and packed byte integer
 Packed word and packed word integer
 Packed doubleword and packed doubleword integer
 Packed quadword and packed quadword integer
 Packed single-precision floating-point and packed double-precision

floating-point

ARM Data Types
ARM processors support
data types of:
•8 (byte)
•16 (halfword)
•32 (word) bits in length

Alignment checking
•When the appropriate control
bit is set, a data abort signal
indicates an alignment fault for
attempting unaligned access

Unaligned access
•When this option is enabled,
the processor uses one or
more memory accesses to
generate the required transfer
of adjacent bytes transparently
to the programmer

For all three data types
an unsigned

interpretation is
supported in which the

value represents an
unsigned, nonnegative

integer

All three data types can
also be used for twos
complement signed

integers

ARM Endian Support

+

Common

Instruction Set
Operations

(page 1 of 2)

+

Common
Instruction

Set
Operations

(page 2 of 2)

Processor Actions for Various Types of Operations

Data Transfer

Most fundamental type of
machine instruction

Must specify:
• Location of the source and

destination operands
• The length of data to be

transferred must be indicated
• The mode of addressing for each

operand must be specified

Examples of IBM EAS/390 Data Transfer Operations

+

Arithmetic

 Most machines provide the basic arithmetic
operations of add, subtract, multiply, and divide

 These are provided for signed integer (fixed-
point) numbers

 Often they are also provided for floating-point
and packed decimal numbers

 Other possible operations include a variety of
single-operand instructions:

 Absolute
 Take the absolute value of the operand

 Negate
 Negate the operand

 Increment
 Add 1 to the operand

Decrement

 Subtract 1 from the operand

Logical

Table 12.6 Basic Logical Operations

+

Shift and Rotate
Operations

+
Examples of Shift and Rotate

Operations

+
Input/Output

 Variety of approaches taken:
 Isolated programmed I/O

 Memory-mapped programmed I/O

 DMA

 Use of an I/O processor

 Many implementations provide only a few I/O instructions,
with the specific actions specified by parameters, codes, or
command words

System Control

Instructions that can be executed only while the processor is in a
certain privileged state or is executing a program in a special
privileged area of memory

Typically these instructions are reserved for the use of the
operating system

Examples of system control operations:

A system control instruction
may read or alter a control

register

An instruction to read or
modify a storage protection

key

Access to process control
blocks in a

multiprogramming system

+
Transfer of Control

 Reasons why transfer-of-control operations are required:
 It is essential to be able to execute each instruction more than

once

 Virtually all programs involve some decision making

 It helps if there are mechanisms for breaking the task up into
smaller pieces that can be worked on one at a time

 Most common transfer-of-control operations found in
instruction sets:
 Branch

 Skip

 Procedure call

+

Branch
Instruction

Skip Instructions

Includes an implied
address

Typically implies that one
instruction be skipped,

thus the implied address
equals the address of the
next instruction plus one

instruction length

Because the skip
instruction does not
require a destination

address field it is free to
do other things

Example is the
increment-and-skip-if-
zero (ISZ) instruction

+
Procedure Call Instructions

 Self-contained computer program that is incorporated into a
larger program
 At any point in the program the procedure may be invoked, or called
 Processor is instructed to go and execute the entire procedure and

then return to the point from which the call took place

 Two principal reasons for use of procedures:
 Economy
 A procedure allows the same piece of code to be used many times

 Modularity

 Involves two basic instructions:
 A call instruction that branches from the present location to the

procedure
 Return instruction that returns from the procedure to the place from

which it was called

+
Nested

Procedures

Use of Stack to Implement Nested
Procedures

+

 x86

Operation
Types (With
Examples of

Typical
Operations)

(page 1 of 2)

 x86

Operation
Types (With
Examples of

Typical
Operations)

(page 2 of 2)

+
Call/Return Instructions

 The x86 provides four instructions to support procedure call/return:
 CALL
 ENTER
 LEAVE
 RETURN

 Common means of implementing the procedure is via the use of stack
frames

 The CALL instruction pushes the current instruction pointer value onto
the stack and causes a jump to the entry point of the procedure by
placing the address of the entry point in the instruction pointer

 The ENTER instruction was added to the instruction set to provide direct
support for the compiler

x86 Status Flags

x86
Condition
Codes for

Conditional
Jump and

SETcc
Instructions

+
x86 Single-Instruction, Multiple-
Data (SIMD) Instructions

 1996 Intel introduced MMX technology into its Pentium
product line
 MMX is a set of highly optimized instructions for multimedia tasks

 Video and audio data are typically composed of large arrays
of small data types

 Three new data types are defined in MMX
 Packed byte
 Packed word
 Packed doubleword

 Each data type is 64 bits in length and consists of multiple
smaller data fields, each of which holds a fixed-point integer

MMX
Instruction

Set

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword
(Q)], the data types are indicated in brackets.

ARM Operation Types

Load and store
instructions

Branch
instructions

Data-processing
instructions

Multiply
instructions

Parallel addition
and subtraction

instructions

Extend
instructions

Status register
access

instructions

ARM
Conditions

for
Conditional
Instruction
Execution

	SEN361 Computer Organization ��Prof. Dr. Hasan Hüseyin BALIK�(6th Week)
	Outline
	Slide Number 3
	3.1 Outline
	Machine Instruction Characteristics
	Elements of a Machine Instruction
	Instruction Cycle State Diagram
	Source and result operands can be in one of four areas:�
	Instruction Representation
	Instruction Types
	Number of Addresses
	Utilization of Instruction Addresses (Nonbranching Instructions)
	Instruction Set Design
	Types of Operands
	Numbers
	Characters
	Logical Data
	x86 Data Types
	x86 Numeric Data Formats
	Single-Instruction-Multiple-Data (SIMD) Data Types
	ARM Data Types
	ARM Endian Support
	�Common Instruction Set Operations ��(page 1 of 2)
	� ��Common Instruction Set Operations ��(page 2 of 2)
	�Processor Actions for Various Types of Operations
	Data Transfer
	�Examples of IBM EAS/390 Data Transfer Operations
	Arithmetic
	Logical
	Shift and Rotate Operations
	�Examples of Shift and Rotate Operations
	Input/Output
	System Control
	Transfer of Control
	Branch �Instruction
	Skip Instructions
	Procedure Call Instructions
	Nested �Procedures
	Use of Stack to Implement Nested Procedures
	Slide Number 40
	Slide Number 41
	Call/Return Instructions
	x86 Status Flags
	 ��x86 �Condition Codes for Conditional Jump and SETcc Instructions
	x86 Single-Instruction, Multiple-Data (SIMD) Instructions
	MMX�Instruction�Set
	ARM Operation Types
	ARM Conditions for Conditional Instruction Execution

