
+

SEN361 Computer Organization

Prof. Dr. Hasan Hüseyin BALIK

(11th Week)

+

Outline

4. Parallel Organization

4.1 Parallel Processing

4.2 Multicore Computers

+

4.1 Parallel Processing

+

4.1 Outline

 Multiple Processor Organizations

 Symmetric Multiprocessors

 Cache Coherence and the MESI Protocol

 Multithreading and Chip Multiprocessors

 Clusters

 Nonuniform Memory Access

 Vector Computation

+
Multiple Processor Organization

 Single instruction, single data
(SISD) stream

 Single processor executes a
single instruction stream to
operate on data stored in a single
memory

 Uniprocessors fall into this
category

 Single instruction, multiple data
(SIMD) stream

 A single machine instruction
controls the simultaneous
execution of a number of
processing elements on a
lockstep basis

 Vector and array processors fall
into this category

 Multiple instruction, single data
(MISD) stream

 A sequence of data is transmitted
to a set of processors, each of
which executes a different
instruction sequence

 Not commercially implemented

 Multiple instruction, multiple
data (MIMD) stream

 A set of processors
simultaneously execute different
instruction sequences on different
data sets

 SMPs, clusters and NUMA systems
fit this category

Symmetric Multiprocessor (SMP)

A stand alone computer with
the following characteristics:

Two or more
similar

processors of
comparable

capacity

Processors
share same
memory and
I/O facilities

• Processors are
connected by a
bus or other
internal
connection

• Memory access
time is
approximately
the same for
each processor

All
processors
share access
to I/O
devices

• Either through
same channels
or different
channels giving
paths to same
devices

All
processors

can perform
the same
functions
(hence

“symmetric”)

System
controlled by
integrated
operating
system

• Provides
interaction
between
processors and
their programs
at job, task, file
and data
element levels

Multiprogramming

and

Multiprocessing

Symmetric Multiprocessor

Organization

+

 Simplicity

 Simplest approach to multiprocessor organization

 Flexibility

 Generally easy to expand the system by attaching more

processors to the bus

 Reliability

 The bus is essentially a passive medium and the failure of any

attached device should not cause failure of the whole system

The bus organization has several

attractive features:

+

 Main drawback is performance

 All memory references pass through the common bus

 Performance is limited by bus cycle time

 Each processor should have cache memory

 Reduces the number of bus accesses

 Leads to problems with cache coherence

 If a word is altered in one cache it could conceivably invalidate a

word in another cache

 To prevent this the other processors must be alerted that an

update has taken place

 Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:

+
Multiprocessor Operating System

Design Considerations

 Simultaneous concurrent processes

 OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

 OS tables and management structures must be managed properly to avoid deadlock or invalid operations

 Scheduling

 Any processor may perform scheduling so conflicts must be avoided

 Scheduler must assign ready processes to available processors

 Synchronization

 With multiple active processes having potential access to shared address spaces or I/O resources, care must be
taken to provide effective synchronization

 Synchronization is a facility that enforces mutual exclusion and event ordering

 Memory management

 In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the available
hardware parallelism to achieve the best performance

 Paging mechanisms on different processors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement

 Reliability and fault tolerance

 OS should provide graceful degradation in the face of processor failure

 Scheduler and other portions of the operating system must recognize the loss of a processor and restructure
accordingly

+
Cache Coherence

 Attempt to avoid the need for additional hardware circuitry

and logic by relying on the compiler and operating system to

deal with the problem

 Attractive because the overhead of detecting potential

problems is transferred from run time to compile time, and

the design complexity is transferred from hardware to

software

 However, compile-time software approaches generally must make

conservative decisions, leading to inefficient cache utilization

Software Solutions

+
Cache Coherence

 Generally referred to as cache coherence protocols

 These solutions provide dynamic recognition at run time of
potential inconsistency conditions

 Because the problem is only dealt with when it actually arises
there is more effective use of caches, leading to improved
performance over a software approach

 Approaches are transparent to the programmer and the
compiler, reducing the software development burden

 Can be divided into two categories:

 Directory protocols

 Snoopy protocols

Hardware-Based Solutions

Directory Protocols

Collect and
maintain

information about
copies of data in

cache

Directory stored in
main memory

Requests are
checked against

directory

Appropriate
transfers are
performed

Creates central
bottleneck

Effective in large
scale systems with

complex
interconnection

schemes

Snoopy Protocols

 Distribute the responsibility for maintaining cache coherence
among all of the cache controllers in a multiprocessor

 A cache must recognize when a line that it holds is shared with other
caches

 When updates are performed on a shared cache line, it must be
announced to other caches by a broadcast mechanism

 Each cache controller is able to “snoop” on the network to observe
these broadcast notifications and react accordingly

 Suited to bus-based multiprocessor because the shared bus
provides a simple means for broadcasting and snooping

 Care must be taken that the increased bus traffic required for
broadcasting and snooping does not cancel out the gains from the
use of local caches

 Two basic approaches have been explored:

 Write invalidate

 Write update (or write broadcast)

+
Write Invalidate

 Multiple readers, but only one writer at a time

 When a write is required, all other caches of the line are

invalidated

 Writing processor then has exclusive (cheap) access until

line is required by another processor

 Most widely used in commercial multiprocessor systems

such as the Pentium 4 and PowerPC

 State of every line is marked as modified, exclusive, shared

or invalid

 For this reason the write-invalidate protocol is called MESI

+
Write Update

 Can be multiple readers and writers

 When a processor wishes to update a shared line the word to

be updated is distributed to all others and caches containing

that line can update it

 Some systems use an adaptive mixture of both write-

invalidate and write-update mechanisms

+
MESI Protocol

 Modified

 The line in the cache has been modified and is available only in
this cache

 Exclusive

 The line in the cache is the same as that in main memory and is
not present in any other cache

 Shared

 The line in the cache is the same as that in main memory and may
be present in another cache

 Invalid

 The line in the cache does not contain valid data

To provide cache consistency on an SMP the data cache

supports a protocol known as MESI:

+
Multithreading and Chip

Multiprocessors

 Processor performance can be measured by the rate at which it
executes instructions

 MIPS rate = f * IPC

 f = processor clock frequency, in MHz

 IPC = average instructions per cycle

 Increase performance by increasing clock frequency and
increasing instructions that complete during cycle

 Multithreading

 Allows for a high degree of instruction-level parallelism without
increasing circuit complexity or power consumption

 Instruction stream is divided into several smaller streams, known as
threads, that can be executed in parallel

Definitions of Threads

and Processes Thread in multithreaded
processors may or may not be

the same as the concept of
software threads in a

multiprogrammed operating
system

Thread is concerned with
scheduling and execution,

whereas a process is
concerned with both

scheduling/execution and
resource and resource

ownership

Process:

• An instance of program running on
computer

• Two key characteristics:

• Resource ownership

• Scheduling/execution

Process switch

• Operation that switches the processor
from one process to another by saving all
the process control data, registers, and
other information for the first and
replacing them with the process
information for the second

Thread:

• Dispatchable unit of work within a
process

• Includes processor context (which
includes the program counter and
stack pointer) and data area for stack

• Executes sequentially and is
interruptible so that the processor can
turn to another thread

Thread switch

• The act of switching processor control
between threads within the same
process

• Typically less costly than process
switch

+

Implicit and Explicit

Multithreading

 All commercial processors and most

experimental ones use explicit multithreading

 Concurrently execute instructions from different

explicit threads

 Interleave instructions from different threads on

shared pipelines or parallel execution on parallel

pipelines

 Implicit multithreading is concurrent execution

of multiple threads extracted from single

sequential program

 Implicit threads defined statically by compiler or

dynamically by hardware

+ Approaches to Explicit

Multithreading

 Interleaved

 Fine-grained

 Processor deals with two or
more thread contexts at a
time

 Switching thread at each
clock cycle

 If thread is blocked it is
skipped

 Simultaneous (SMT)

 Instructions are
simultaneously issued from
multiple threads to
execution units of
superscalar processor

 Blocked

 Coarse-grained

 Thread executed until event
causes delay

 Effective on in-order
processor

 Avoids pipeline stall

 Chip multiprocessing

 Processor is replicated on a
single chip

 Each processor handles
separate threads

 Advantage is that the
available logic area on a chip
is used effectively

+
Example Systems

 More recent models of the

Pentium 4 use a multithreading

technique that Intel refers to as

hyperthreading

 Approach is to use SMT with

support for two threads

 Thus the single multithreaded

processor is logically two

processors

 Chip used in high-end
PowerPC products

 Combines chip
multiprocessing with SMT

 Has two separate processors,
each of which is a multithreaded
processor capable of supporting
two threads concurrently using
SMT

 Designers found that having two
two-way SMT processors on a
single chip provided superior
performance to a single four-
way SMT processor

Pentium 4 IBM Power5

+

Clusters

 Alternative to SMP as an approach to providing
high performance and high availability

 Particularly attractive for server applications

 Defined as:

 A group of interconnected whole computers working
together as a unified computing resource that can
create the illusion of being one machine

 (The term whole computer means a system that can run
on its own, apart from the cluster)

 Each computer in a cluster is called a node

 Benefits:

 Absolute scalability

 Incremental scalability

 High availability

 Superior price/performance

+

Cluster

Configurations

+
Operating System Design Issues

 How failures are managed depends on the clustering method used

 Two approaches:

 Highly available clusters

 Fault tolerant clusters

 Failover

 The function of switching applications and data resources over from a failed system
to an alternative system in the cluster

 Failback

 Restoration of applications and data resources to the original system once it
has been fixed

 Load balancing

 Incremental scalability

 Automatically include new computers in scheduling

 Middleware needs to recognize that processes may switch between machines

Parallelizing Computation

Effective use of a cluster requires executing
software from a single application in parallel

Three approaches are:

Parallelizing complier

• Determines at compile time
which parts of an application
can be executed in parallel

• These are then split off to be
assigned to different
computers in the cluster

Parallelized
application

• Application written from the
outset to run on a cluster and
uses message passing to
move data between cluster
nodes

Parametric computing

• Can be used if the essence of
the application is an
algorithm or program that
must be executed a large
number of times, each time
with a different set of starting
conditions or parameters

+
Clusters Compared to SMP

 Easier to manage and
configure

 Much closer to the original
single processor model for
which nearly all applications
are written

 Less physical space and lower
power consumption

 Well established and stable

 Far superior in terms of
incremental and absolute
scalability

 Superior in terms of
availability

 All components of the system
can readily be made highly
redundant

SMP Clustering

 Both provide a configuration with multiple processors to
support high demand applications

 Both solutions are available commercially

+
Nonuniform Memory Access

(NUMA)

 Alternative to SMP and clustering

 Uniform memory access (UMA)

 All processors have access to all parts of main memory using loads and stores

 Access time to all regions of memory is the same

 Access time to memory for different processors is the same

 Nonuniform memory access (NUMA)

 All processors have access to all parts of main memory using loads and stores

 Access time of processor differs depending on which region of main memory
is being accessed

 Different processors access different regions of memory at different speeds

 Cache-coherent NUMA (CC-NUMA)

 A NUMA system in which cache coherence is maintained among the caches of
the various processors

Motivation

SMP has practical limit to
number of processors that
can be used

• Bus traffic limits to between 16 and
64 processors

In clusters each node has its
own private main memory

• Applications do not see a large
global memory

• Coherency is maintained by
software rather than hardware

NUMA retains SMP flavor
while giving large scale

multiprocessing

Objective with NUMA is to
maintain a transparent

system wide memory while
permitting multiple

multiprocessor nodes, each
with its own bus or internal

interconnect system

+
NUMA Pros and Cons

 Main advantage of a CC-

NUMA system is that it can

deliver effective performance

at higher levels of parallelism

than SMP without requiring

major software changes

 Bus traffic on any individual

node is limited to a demand

that the bus can handle

 If many of the memory

accesses are to remote nodes,

performance begins to break

down

 Does not transparently look

like an SMP

 Software changes will be

required to move an operating

system and applications from

an SMP to a CC-NUMA system

 Concern with availability

+
Vector Computation

 There is a need for computers to solve mathematical problems of

physical processes in disciplines such as aerodynamics, seismology,

meteorology, and atomic, nuclear, and plasma physics

 Need for high precision and a program that repetitively performs

floating point arithmetic calculations on large arrays of numbers

 Most of these problems fall into the category known as continuous-field
simulation

 Supercomputers were developed to handle these types of problems

 However they have limited use and a limited market because of their price tag

 There is a constant demand to increase performance

 Array processor

 Designed to address the need for vector computation

 Configured as peripheral devices by both mainframe and minicomputer users
to run the vectorized portions of programs

+

4.2 Multicore Computers

+

4.1 Outline

 Hardware Performance Issues

 Software Performance Issues

 Multicore Organization

 Intel x86 Multicore Organization

 ARM11 MPCore

 IBM zEnterprise 196 Mainframe

+

Alternative Chip

Organization

+ Processor Trends

+
Power Consumption

 By 2015 we can expect to see microprocessor chips with

about 100 billion transistors on a 300 mm2 die

 Assuming that about 50-60% of the chip area is devoted to

memory, the chip will support cache memory of about 100 MB

and leave over 1 billion transistors available for logic

 How to use all those logic transistors is a key design issue

 Pollack’s Rule

 States that performance increase is roughly proportional to square

root of increase in complexity

+
Effective Applications for Multicore

Processors

 Multi-threaded native applications

 Characterized by having a small number of highly threaded
processes

 Lotus Domino, Siebel CRM (Customer Relationship Manager)

 Multi-process applications

 Characterized by the presence of many single-threaded processes

 Oracle, SAP, PeopleSoft

 Java applications

 Java Virtual Machine is a multi-threaded process that provides scheduling
and memory management for Java applications

 Sun’s Java Application Server, BEA’s Weblogic, IBM Websphere, Tomcat

 Multi-instance applications

 One application running multiple times

 If multiple application instances require some degree of isolation,
virtualization technology can be used to provide each of them with its own
separate and secure environment

Multicore

Organization

Alternatives

+

Intel Core Duo

Block Diagram

+
Intel x86 Multicore Organization Core Duo

 Advanced Programmable Interrupt Controller (APIC)

 Provides inter-processor interrupts which allow any process to
interrupt any other processor or set of processors

 Accepts I/O interrupts and routes these to the appropriate core

 Includes a timer which can be set by the OS to generate an
interrupt to the local core

 Power management logic

 Responsible for reducing power consumption when possible,
thus increasing battery life for mobile platforms

 Monitors thermal conditions and CPU activity and adjusts
voltage levels and power consumption appropriately

 Includes an advanced power-gating capability that allows for an
ultra fine grained logic control that turns on individual processor
logic subsystems only if and when they are needed

Continued . . .

+
Intel x86 Multicore Organization Core Duo

 2MB shared L2 cache

 Cache logic allows for a dynamic allocation of cache space based

on current core needs

 MESI support for L1 caches

 Extended to support multiple Core Duo in SMP

 L2 cache controller allows the system to distinguish between a

situation in which data are shared by the two local cores, and a

situation in which the data are shared by one or more caches on

the die as well as by an agent on the external bus

 Bus interface

 Connects to the external bus, known as the Front Side Bus, which

connects to main memory, I/O controllers, and other processor

chips

Intel Core i7-990X Block Diagram

+
Interrupt Handling

 Distributed Interrupt Controller (DIC) collates interrupts from a large
number of sources

 It provides:
 Masking of interrupts

 Prioritization of the interrupts

 Distribution of the interrupts to the target MP11 CPUs

 Tracking status of interrupts

 Generation of interrupts by software

 Is a single function unit that is placed in the system alongside MP11 CPUs

 Memory mapped

 Accessed by CPUs via private interface through SCU

 Provides a means of routing an interrupt request to a single CPU or multiple
CPUs, as required

 Provide a means of interprocessor communication so that a thread on one CPU
can cause activity by a thread on another CPU

+
DIC Routing

 The DIC can route an interrupt to one or more CPUs in the
following three ways:

 An interrupt can be directed to a specific processor only

 An interrupt can be directed to a defined group of processors

 An interrupt can be directed to all processors

 OS can generate interrupt to:

 All but self

 Self

 Other specific CPU

 Typically combined with shared memory for inter-process
communication

 16 interrupt IDs available for inter-processor communication

+
Interrupt States

Inactive

• Is one that is nonasserted,
or which in a multi-
processing environment
has been completely
processed by that CPU but
can still be either Pending
or Active in some of the
CPUs to which it is
targeted, and so might not
have been cleared at the
interrupt source

Pending

• Is one that has been
asserted, and for which
processing has not started
on that CPU

Active

• Is one that has been started
on that CPU, but processing
is not complete

• An Active interrupt can be
pre-empted when a new
interrupt of higher priority
interrupts MP11 CPU
interrupt processing

From the point of view of an MP11 CPU, an interrupt can be:

+
Interrupt Sources

 Inter-process Interrupts (IPI)
 Private to CPU

 ID0-ID15

 Software triggered

 Priority depends on target CPU not source

 Private timer and/or watchdog interrupt
 ID29 and ID30

 Legacy FIQ line
 Legacy FIQ pin, per CPU, bypasses interrupt distributor

 Directly drives interrupts to CPU

 Hardware
 Triggered by programmable events on associated interrupt lines

 Up to 224 lines

 Start at ID32

ARM11

MPCore

Interrupt

Distributor

+
Cache Coherency

 Snoop Control Unit (SCU) resolves most shared data bottleneck issues

 L1 cache coherency scheme is based on the MESI protocol

 Direct Data Intervention (DDI)

 Enables copying clean data between L1 caches without accessing external memory

 Reduces read after write from L1 to L2

 Can resolve local L1 miss from remote L1 rather than L2

 Duplicated tag RAMs

 Cache tags implemented as separate block of RAM

 Same length as number of lines in cache

 Duplicates used by SCU to check data availability before sending coherency commands

 Only send to CPUs that must update coherent data cache

 Migratory lines

 Allows moving dirty data between CPUs without writing to L2 and reading back from

external memory

