
+

SEN361 Computer Organization

Prof. Dr. Hasan Hüseyin BALIK

(11th Week)

+

Outline

4. Parallel Organization

4.1 Parallel Processing

4.2 Multicore Computers

+

4.1 Parallel Processing

+

4.1 Outline

 Multiple Processor Organizations

 Symmetric Multiprocessors

 Cache Coherence and the MESI Protocol

 Multithreading and Chip Multiprocessors

 Clusters

 Nonuniform Memory Access

 Vector Computation

+
Multiple Processor Organization

 Single instruction, single data
(SISD) stream

 Single processor executes a
single instruction stream to
operate on data stored in a single
memory

 Uniprocessors fall into this
category

 Single instruction, multiple data
(SIMD) stream

 A single machine instruction
controls the simultaneous
execution of a number of
processing elements on a
lockstep basis

 Vector and array processors fall
into this category

 Multiple instruction, single data
(MISD) stream

 A sequence of data is transmitted
to a set of processors, each of
which executes a different
instruction sequence

 Not commercially implemented

 Multiple instruction, multiple
data (MIMD) stream

 A set of processors
simultaneously execute different
instruction sequences on different
data sets

 SMPs, clusters and NUMA systems
fit this category

Symmetric Multiprocessor (SMP)

A stand alone computer with
the following characteristics:

Two or more
similar

processors of
comparable

capacity

Processors
share same
memory and
I/O facilities

• Processors are
connected by a
bus or other
internal
connection

• Memory access
time is
approximately
the same for
each processor

All
processors
share access
to I/O
devices

• Either through
same channels
or different
channels giving
paths to same
devices

All
processors

can perform
the same
functions
(hence

“symmetric”)

System
controlled by
integrated
operating
system

• Provides
interaction
between
processors and
their programs
at job, task, file
and data
element levels

Multiprogramming

and

Multiprocessing

Symmetric Multiprocessor

Organization

+

 Simplicity

 Simplest approach to multiprocessor organization

 Flexibility

 Generally easy to expand the system by attaching more

processors to the bus

 Reliability

 The bus is essentially a passive medium and the failure of any

attached device should not cause failure of the whole system

The bus organization has several

attractive features:

+

 Main drawback is performance

 All memory references pass through the common bus

 Performance is limited by bus cycle time

 Each processor should have cache memory

 Reduces the number of bus accesses

 Leads to problems with cache coherence

 If a word is altered in one cache it could conceivably invalidate a

word in another cache

 To prevent this the other processors must be alerted that an

update has taken place

 Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:

+
Multiprocessor Operating System

Design Considerations

 Simultaneous concurrent processes

 OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

 OS tables and management structures must be managed properly to avoid deadlock or invalid operations

 Scheduling

 Any processor may perform scheduling so conflicts must be avoided

 Scheduler must assign ready processes to available processors

 Synchronization

 With multiple active processes having potential access to shared address spaces or I/O resources, care must be
taken to provide effective synchronization

 Synchronization is a facility that enforces mutual exclusion and event ordering

 Memory management

 In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the available
hardware parallelism to achieve the best performance

 Paging mechanisms on different processors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement

 Reliability and fault tolerance

 OS should provide graceful degradation in the face of processor failure

 Scheduler and other portions of the operating system must recognize the loss of a processor and restructure
accordingly

+
Cache Coherence

 Attempt to avoid the need for additional hardware circuitry

and logic by relying on the compiler and operating system to

deal with the problem

 Attractive because the overhead of detecting potential

problems is transferred from run time to compile time, and

the design complexity is transferred from hardware to

software

 However, compile-time software approaches generally must make

conservative decisions, leading to inefficient cache utilization

Software Solutions

+
Cache Coherence

 Generally referred to as cache coherence protocols

 These solutions provide dynamic recognition at run time of
potential inconsistency conditions

 Because the problem is only dealt with when it actually arises
there is more effective use of caches, leading to improved
performance over a software approach

 Approaches are transparent to the programmer and the
compiler, reducing the software development burden

 Can be divided into two categories:

 Directory protocols

 Snoopy protocols

Hardware-Based Solutions

Directory Protocols

Collect and
maintain

information about
copies of data in

cache

Directory stored in
main memory

Requests are
checked against

directory

Appropriate
transfers are
performed

Creates central
bottleneck

Effective in large
scale systems with

complex
interconnection

schemes

Snoopy Protocols

 Distribute the responsibility for maintaining cache coherence
among all of the cache controllers in a multiprocessor

 A cache must recognize when a line that it holds is shared with other
caches

 When updates are performed on a shared cache line, it must be
announced to other caches by a broadcast mechanism

 Each cache controller is able to “snoop” on the network to observe
these broadcast notifications and react accordingly

 Suited to bus-based multiprocessor because the shared bus
provides a simple means for broadcasting and snooping

 Care must be taken that the increased bus traffic required for
broadcasting and snooping does not cancel out the gains from the
use of local caches

 Two basic approaches have been explored:

 Write invalidate

 Write update (or write broadcast)

+
Write Invalidate

 Multiple readers, but only one writer at a time

 When a write is required, all other caches of the line are

invalidated

 Writing processor then has exclusive (cheap) access until

line is required by another processor

 Most widely used in commercial multiprocessor systems

such as the Pentium 4 and PowerPC

 State of every line is marked as modified, exclusive, shared

or invalid

 For this reason the write-invalidate protocol is called MESI

+
Write Update

 Can be multiple readers and writers

 When a processor wishes to update a shared line the word to

be updated is distributed to all others and caches containing

that line can update it

 Some systems use an adaptive mixture of both write-

invalidate and write-update mechanisms

+
MESI Protocol

 Modified

 The line in the cache has been modified and is available only in
this cache

 Exclusive

 The line in the cache is the same as that in main memory and is
not present in any other cache

 Shared

 The line in the cache is the same as that in main memory and may
be present in another cache

 Invalid

 The line in the cache does not contain valid data

To provide cache consistency on an SMP the data cache

supports a protocol known as MESI:

+
Multithreading and Chip

Multiprocessors

 Processor performance can be measured by the rate at which it
executes instructions

 MIPS rate = f * IPC

 f = processor clock frequency, in MHz

 IPC = average instructions per cycle

 Increase performance by increasing clock frequency and
increasing instructions that complete during cycle

 Multithreading

 Allows for a high degree of instruction-level parallelism without
increasing circuit complexity or power consumption

 Instruction stream is divided into several smaller streams, known as
threads, that can be executed in parallel

Definitions of Threads

and Processes Thread in multithreaded
processors may or may not be

the same as the concept of
software threads in a

multiprogrammed operating
system

Thread is concerned with
scheduling and execution,

whereas a process is
concerned with both

scheduling/execution and
resource and resource

ownership

Process:

• An instance of program running on
computer

• Two key characteristics:

• Resource ownership

• Scheduling/execution

Process switch

• Operation that switches the processor
from one process to another by saving all
the process control data, registers, and
other information for the first and
replacing them with the process
information for the second

Thread:

• Dispatchable unit of work within a
process

• Includes processor context (which
includes the program counter and
stack pointer) and data area for stack

• Executes sequentially and is
interruptible so that the processor can
turn to another thread

Thread switch

• The act of switching processor control
between threads within the same
process

• Typically less costly than process
switch

+

Implicit and Explicit

Multithreading

 All commercial processors and most

experimental ones use explicit multithreading

 Concurrently execute instructions from different

explicit threads

 Interleave instructions from different threads on

shared pipelines or parallel execution on parallel

pipelines

 Implicit multithreading is concurrent execution

of multiple threads extracted from single

sequential program

 Implicit threads defined statically by compiler or

dynamically by hardware

+ Approaches to Explicit

Multithreading

 Interleaved

 Fine-grained

 Processor deals with two or
more thread contexts at a
time

 Switching thread at each
clock cycle

 If thread is blocked it is
skipped

 Simultaneous (SMT)

 Instructions are
simultaneously issued from
multiple threads to
execution units of
superscalar processor

 Blocked

 Coarse-grained

 Thread executed until event
causes delay

 Effective on in-order
processor

 Avoids pipeline stall

 Chip multiprocessing

 Processor is replicated on a
single chip

 Each processor handles
separate threads

 Advantage is that the
available logic area on a chip
is used effectively

+
Example Systems

 More recent models of the

Pentium 4 use a multithreading

technique that Intel refers to as

hyperthreading

 Approach is to use SMT with

support for two threads

 Thus the single multithreaded

processor is logically two

processors

 Chip used in high-end
PowerPC products

 Combines chip
multiprocessing with SMT

 Has two separate processors,
each of which is a multithreaded
processor capable of supporting
two threads concurrently using
SMT

 Designers found that having two
two-way SMT processors on a
single chip provided superior
performance to a single four-
way SMT processor

Pentium 4 IBM Power5

+

Clusters

 Alternative to SMP as an approach to providing
high performance and high availability

 Particularly attractive for server applications

 Defined as:

 A group of interconnected whole computers working
together as a unified computing resource that can
create the illusion of being one machine

 (The term whole computer means a system that can run
on its own, apart from the cluster)

 Each computer in a cluster is called a node

 Benefits:

 Absolute scalability

 Incremental scalability

 High availability

 Superior price/performance

+

Cluster

Configurations

+
Operating System Design Issues

 How failures are managed depends on the clustering method used

 Two approaches:

 Highly available clusters

 Fault tolerant clusters

 Failover

 The function of switching applications and data resources over from a failed system
to an alternative system in the cluster

 Failback

 Restoration of applications and data resources to the original system once it
has been fixed

 Load balancing

 Incremental scalability

 Automatically include new computers in scheduling

 Middleware needs to recognize that processes may switch between machines

Parallelizing Computation

Effective use of a cluster requires executing
software from a single application in parallel

Three approaches are:

Parallelizing complier

• Determines at compile time
which parts of an application
can be executed in parallel

• These are then split off to be
assigned to different
computers in the cluster

Parallelized
application

• Application written from the
outset to run on a cluster and
uses message passing to
move data between cluster
nodes

Parametric computing

• Can be used if the essence of
the application is an
algorithm or program that
must be executed a large
number of times, each time
with a different set of starting
conditions or parameters

+
Clusters Compared to SMP

 Easier to manage and
configure

 Much closer to the original
single processor model for
which nearly all applications
are written

 Less physical space and lower
power consumption

 Well established and stable

 Far superior in terms of
incremental and absolute
scalability

 Superior in terms of
availability

 All components of the system
can readily be made highly
redundant

SMP Clustering

 Both provide a configuration with multiple processors to
support high demand applications

 Both solutions are available commercially

+
Nonuniform Memory Access

(NUMA)

 Alternative to SMP and clustering

 Uniform memory access (UMA)

 All processors have access to all parts of main memory using loads and stores

 Access time to all regions of memory is the same

 Access time to memory for different processors is the same

 Nonuniform memory access (NUMA)

 All processors have access to all parts of main memory using loads and stores

 Access time of processor differs depending on which region of main memory
is being accessed

 Different processors access different regions of memory at different speeds

 Cache-coherent NUMA (CC-NUMA)

 A NUMA system in which cache coherence is maintained among the caches of
the various processors

Motivation

SMP has practical limit to
number of processors that
can be used

• Bus traffic limits to between 16 and
64 processors

In clusters each node has its
own private main memory

• Applications do not see a large
global memory

• Coherency is maintained by
software rather than hardware

NUMA retains SMP flavor
while giving large scale

multiprocessing

Objective with NUMA is to
maintain a transparent

system wide memory while
permitting multiple

multiprocessor nodes, each
with its own bus or internal

interconnect system

+
NUMA Pros and Cons

 Main advantage of a CC-

NUMA system is that it can

deliver effective performance

at higher levels of parallelism

than SMP without requiring

major software changes

 Bus traffic on any individual

node is limited to a demand

that the bus can handle

 If many of the memory

accesses are to remote nodes,

performance begins to break

down

 Does not transparently look

like an SMP

 Software changes will be

required to move an operating

system and applications from

an SMP to a CC-NUMA system

 Concern with availability

+
Vector Computation

 There is a need for computers to solve mathematical problems of

physical processes in disciplines such as aerodynamics, seismology,

meteorology, and atomic, nuclear, and plasma physics

 Need for high precision and a program that repetitively performs

floating point arithmetic calculations on large arrays of numbers

 Most of these problems fall into the category known as continuous-field
simulation

 Supercomputers were developed to handle these types of problems

 However they have limited use and a limited market because of their price tag

 There is a constant demand to increase performance

 Array processor

 Designed to address the need for vector computation

 Configured as peripheral devices by both mainframe and minicomputer users
to run the vectorized portions of programs

+

4.2 Multicore Computers

+

4.1 Outline

 Hardware Performance Issues

 Software Performance Issues

 Multicore Organization

 Intel x86 Multicore Organization

 ARM11 MPCore

 IBM zEnterprise 196 Mainframe

+

Alternative Chip

Organization

+ Processor Trends

+
Power Consumption

 By 2015 we can expect to see microprocessor chips with

about 100 billion transistors on a 300 mm2 die

 Assuming that about 50-60% of the chip area is devoted to

memory, the chip will support cache memory of about 100 MB

and leave over 1 billion transistors available for logic

 How to use all those logic transistors is a key design issue

 Pollack’s Rule

 States that performance increase is roughly proportional to square

root of increase in complexity

+
Effective Applications for Multicore

Processors

 Multi-threaded native applications

 Characterized by having a small number of highly threaded
processes

 Lotus Domino, Siebel CRM (Customer Relationship Manager)

 Multi-process applications

 Characterized by the presence of many single-threaded processes

 Oracle, SAP, PeopleSoft

 Java applications

 Java Virtual Machine is a multi-threaded process that provides scheduling
and memory management for Java applications

 Sun’s Java Application Server, BEA’s Weblogic, IBM Websphere, Tomcat

 Multi-instance applications

 One application running multiple times

 If multiple application instances require some degree of isolation,
virtualization technology can be used to provide each of them with its own
separate and secure environment

Multicore

Organization

Alternatives

+

Intel Core Duo

Block Diagram

+
Intel x86 Multicore Organization Core Duo

 Advanced Programmable Interrupt Controller (APIC)

 Provides inter-processor interrupts which allow any process to
interrupt any other processor or set of processors

 Accepts I/O interrupts and routes these to the appropriate core

 Includes a timer which can be set by the OS to generate an
interrupt to the local core

 Power management logic

 Responsible for reducing power consumption when possible,
thus increasing battery life for mobile platforms

 Monitors thermal conditions and CPU activity and adjusts
voltage levels and power consumption appropriately

 Includes an advanced power-gating capability that allows for an
ultra fine grained logic control that turns on individual processor
logic subsystems only if and when they are needed

Continued . . .

+
Intel x86 Multicore Organization Core Duo

 2MB shared L2 cache

 Cache logic allows for a dynamic allocation of cache space based

on current core needs

 MESI support for L1 caches

 Extended to support multiple Core Duo in SMP

 L2 cache controller allows the system to distinguish between a

situation in which data are shared by the two local cores, and a

situation in which the data are shared by one or more caches on

the die as well as by an agent on the external bus

 Bus interface

 Connects to the external bus, known as the Front Side Bus, which

connects to main memory, I/O controllers, and other processor

chips

Intel Core i7-990X Block Diagram

+
Interrupt Handling

 Distributed Interrupt Controller (DIC) collates interrupts from a large
number of sources

 It provides:
 Masking of interrupts

 Prioritization of the interrupts

 Distribution of the interrupts to the target MP11 CPUs

 Tracking status of interrupts

 Generation of interrupts by software

 Is a single function unit that is placed in the system alongside MP11 CPUs

 Memory mapped

 Accessed by CPUs via private interface through SCU

 Provides a means of routing an interrupt request to a single CPU or multiple
CPUs, as required

 Provide a means of interprocessor communication so that a thread on one CPU
can cause activity by a thread on another CPU

+
DIC Routing

 The DIC can route an interrupt to one or more CPUs in the
following three ways:

 An interrupt can be directed to a specific processor only

 An interrupt can be directed to a defined group of processors

 An interrupt can be directed to all processors

 OS can generate interrupt to:

 All but self

 Self

 Other specific CPU

 Typically combined with shared memory for inter-process
communication

 16 interrupt IDs available for inter-processor communication

+
Interrupt States

Inactive

• Is one that is nonasserted,
or which in a multi-
processing environment
has been completely
processed by that CPU but
can still be either Pending
or Active in some of the
CPUs to which it is
targeted, and so might not
have been cleared at the
interrupt source

Pending

• Is one that has been
asserted, and for which
processing has not started
on that CPU

Active

• Is one that has been started
on that CPU, but processing
is not complete

• An Active interrupt can be
pre-empted when a new
interrupt of higher priority
interrupts MP11 CPU
interrupt processing

From the point of view of an MP11 CPU, an interrupt can be:

+
Interrupt Sources

 Inter-process Interrupts (IPI)
 Private to CPU

 ID0-ID15

 Software triggered

 Priority depends on target CPU not source

 Private timer and/or watchdog interrupt
 ID29 and ID30

 Legacy FIQ line
 Legacy FIQ pin, per CPU, bypasses interrupt distributor

 Directly drives interrupts to CPU

 Hardware
 Triggered by programmable events on associated interrupt lines

 Up to 224 lines

 Start at ID32

ARM11

MPCore

Interrupt

Distributor

+
Cache Coherency

 Snoop Control Unit (SCU) resolves most shared data bottleneck issues

 L1 cache coherency scheme is based on the MESI protocol

 Direct Data Intervention (DDI)

 Enables copying clean data between L1 caches without accessing external memory

 Reduces read after write from L1 to L2

 Can resolve local L1 miss from remote L1 rather than L2

 Duplicated tag RAMs

 Cache tags implemented as separate block of RAM

 Same length as number of lines in cache

 Duplicates used by SCU to check data availability before sending coherency commands

 Only send to CPUs that must update coherent data cache

 Migratory lines

 Allows moving dirty data between CPUs without writing to L2 and reading back from

external memory

