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Multiple Processor Organization

 Single instruction, single data 
(SISD) stream

 Single processor executes a 
single instruction stream to 
operate on data stored in a single 
memory

 Uniprocessors fall into this 
category

 Single instruction, multiple data 
(SIMD) stream

 A single machine instruction 
controls the simultaneous 
execution of a number of 
processing elements on a 
lockstep basis

 Vector and array processors fall 
into this category

 Multiple instruction, single data 
(MISD) stream

 A sequence of data is transmitted 
to a set of processors, each of 
which executes a different 
instruction sequence

 Not commercially implemented

 Multiple instruction, multiple 
data (MIMD) stream

 A set of processors 
simultaneously execute different 
instruction sequences on different 
data sets

 SMPs, clusters and NUMA systems 
fit this category







Symmetric Multiprocessor (SMP)

A stand alone computer with 
the following characteristics:

Two or more 
similar 

processors of 
comparable 

capacity

Processors 
share same 
memory and 
I/O facilities

• Processors are 
connected by a 
bus or other 
internal 
connection

• Memory access 
time is 
approximately 
the same for 
each processor

All 
processors 
share access 
to I/O 
devices

• Either through 
same channels 
or different 
channels giving 
paths to same 
devices

All 
processors 

can perform 
the same 
functions 
(hence 

“symmetric”)

System 
controlled by 
integrated 
operating 
system

• Provides 
interaction 
between 
processors and 
their programs 
at job, task, file 
and data 
element levels



Multiprogramming

and 

Multiprocessing



Symmetric Multiprocessor 

Organization
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 Simplicity

 Simplest approach to multiprocessor organization

 Flexibility

 Generally easy to expand the system by attaching more 

processors to the bus

 Reliability

 The bus is essentially a passive medium and the failure of any 

attached device should not cause failure of the whole system

The bus organization has several 

attractive features:
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 Main drawback is performance

 All memory references pass through the common bus

 Performance is limited by bus cycle time

 Each processor should have cache memory

 Reduces the number of bus accesses

 Leads to problems with cache coherence

 If a word is altered in one cache it could conceivably invalidate a 

word in another cache

 To prevent this the other processors must be alerted that an 

update has taken place

 Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:
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Multiprocessor Operating System 

Design Considerations

 Simultaneous concurrent processes

 OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

 OS tables and management structures must be managed properly to avoid deadlock or invalid operations

 Scheduling

 Any processor may perform scheduling so conflicts must be avoided

 Scheduler must assign ready processes to available processors

 Synchronization

 With multiple active processes having potential access to shared address spaces or I/O resources, care must be 
taken to provide effective synchronization

 Synchronization is a facility that enforces mutual exclusion and event ordering

 Memory management

 In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the available 
hardware parallelism to achieve the best performance

 Paging mechanisms on different processors must be coordinated to enforce consistency when several processors 
share a page or segment and to decide on page replacement

 Reliability and fault tolerance

 OS should provide graceful degradation in the face of processor failure

 Scheduler and other portions of the operating system must recognize the loss of a processor and restructure 
accordingly
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Cache Coherence

 Attempt to avoid the need for additional hardware circuitry 

and logic by relying on the compiler and operating system to 

deal with the problem

 Attractive because the overhead of detecting potential 

problems is transferred from run time to compile time, and 

the design complexity is transferred from hardware to 

software

 However, compile-time software approaches generally must make 

conservative decisions, leading to inefficient cache utilization

Software Solutions
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Cache Coherence

 Generally referred to as cache coherence protocols

 These solutions provide dynamic recognition at run time of 
potential inconsistency conditions

 Because the problem is only dealt with when it actually arises 
there is more effective use of caches, leading to improved 
performance over a software approach

 Approaches are transparent to the programmer and the 
compiler, reducing the software development burden

 Can be divided into two categories:

 Directory protocols

 Snoopy protocols

Hardware-Based Solutions



Directory Protocols

Collect and 
maintain 

information about 
copies of data in 

cache

Directory stored in 
main memory

Requests are 
checked against 

directory

Appropriate 
transfers are 
performed

Creates central 
bottleneck

Effective in large 
scale systems with 

complex 
interconnection 

schemes



Snoopy Protocols

 Distribute the responsibility for maintaining cache coherence 
among all of the cache controllers in a multiprocessor

 A cache must recognize when a line that it holds is shared with other 
caches

 When updates are performed on a shared cache line, it must be 
announced to other caches by a broadcast mechanism

 Each cache controller is able to “snoop” on the network to observe 
these broadcast notifications and react accordingly

 Suited to bus-based multiprocessor because the shared bus 
provides a simple means for broadcasting and snooping

 Care must be taken that the increased bus traffic required for 
broadcasting and snooping does not cancel out the gains from the 
use of local caches

 Two basic approaches have been explored:

 Write invalidate

 Write update (or write broadcast)
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Write Invalidate

 Multiple readers, but only one writer at a time

 When a write is required, all other caches of the line are 

invalidated

 Writing processor then has exclusive (cheap) access until 

line is required by another processor

 Most widely used in commercial multiprocessor systems 

such as the Pentium 4 and PowerPC

 State of every line is marked as modified, exclusive, shared 

or invalid

 For this reason the write-invalidate protocol is called MESI
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Write Update

 Can be multiple readers and writers

 When a processor wishes to update a shared line the word to 

be updated is distributed to all others and caches containing 

that line can update it

 Some systems use an adaptive mixture of both write-

invalidate and write-update mechanisms
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MESI Protocol

 Modified

 The line in the cache has been modified and is available only in 
this cache

 Exclusive

 The line in the cache is the same as that in main memory and is 
not present in any other cache

 Shared

 The line in the cache is the same as that in main memory and may 
be present in another cache

 Invalid

 The line in the cache does not contain valid data 

To provide cache consistency on an SMP the data cache 

supports a protocol known as MESI:
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Multithreading and Chip 

Multiprocessors

 Processor performance can be measured by the rate at which it 
executes instructions

 MIPS rate = f * IPC

 f = processor clock frequency, in MHz

 IPC = average instructions per cycle

 Increase performance by increasing clock frequency and 
increasing instructions that complete during cycle

 Multithreading

 Allows for a high degree of instruction-level parallelism without 
increasing circuit complexity or power consumption

 Instruction stream is divided into several smaller streams, known as 
threads, that can be executed in parallel



Definitions of Threads

and Processes Thread in multithreaded 
processors may or may not be 

the same as the concept of 
software threads in a 

multiprogrammed operating 
system

Thread is concerned with 
scheduling and execution, 

whereas a process is 
concerned with both 

scheduling/execution and 
resource and resource 

ownership

Process: 

• An instance of program running on 
computer

• Two key characteristics:

• Resource ownership

• Scheduling/execution

Process switch

• Operation that switches the processor 
from one process to another by saving all 
the process control data, registers, and 
other information for the first and 
replacing them with the process 
information for the second

Thread: 

• Dispatchable unit of work within a 
process

• Includes processor context (which 
includes the program counter and 
stack pointer) and data area for stack

• Executes sequentially and is 
interruptible so that the processor can 
turn to another thread

Thread switch

• The act of switching processor control 
between threads within the same 
process

• Typically less costly than process 
switch
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Implicit and Explicit 

Multithreading

 All commercial processors and most 

experimental ones use explicit multithreading

 Concurrently execute instructions from different 

explicit threads

 Interleave instructions from different threads on 

shared pipelines or parallel execution on parallel 

pipelines

 Implicit multithreading is concurrent execution 

of multiple threads extracted from single 

sequential program

 Implicit threads defined statically by compiler or 

dynamically by hardware



+ Approaches to Explicit 

Multithreading

 Interleaved

 Fine-grained

 Processor deals with two or 
more thread contexts at a 
time

 Switching thread at each 
clock cycle

 If thread is blocked it is 
skipped

 Simultaneous (SMT)

 Instructions are 
simultaneously issued from 
multiple threads to 
execution units of 
superscalar processor

 Blocked 

 Coarse-grained 

 Thread executed until event 
causes delay

 Effective on in-order 
processor

 Avoids pipeline stall

 Chip multiprocessing

 Processor is replicated on a 
single chip

 Each processor handles 
separate threads

 Advantage is that the 
available logic area on a chip 
is used effectively
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Example Systems

 More recent models of the 

Pentium 4 use a multithreading 

technique that Intel refers to as 

hyperthreading

 Approach is to use SMT with 

support for two threads

 Thus the single multithreaded 

processor is logically two 

processors

 Chip used in high-end 
PowerPC products

 Combines chip 
multiprocessing with SMT

 Has two separate processors, 
each of which is a multithreaded 
processor capable of supporting 
two threads concurrently using 
SMT

 Designers found that having two 
two-way SMT processors on a 
single chip provided superior 
performance to a single four-
way SMT processor

Pentium 4 IBM Power5
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Clusters

 Alternative to SMP as an approach to providing 
high performance and high availability

 Particularly attractive for server applications

 Defined as:

 A group of interconnected whole computers working 
together as a unified computing resource that can 
create the illusion of being one machine

 (The term whole computer means a system that can run 
on its own, apart from the cluster)

 Each computer in a cluster is called a node

 Benefits:

 Absolute scalability

 Incremental scalability

 High availability

 Superior price/performance
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Cluster 

Configurations
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Operating System Design Issues

 How failures are managed depends on the clustering method used

 Two approaches:

 Highly available clusters

 Fault tolerant clusters

 Failover

 The function of switching applications and data resources over from a failed system 
to an alternative system in the cluster

 Failback

 Restoration of applications and data resources to the original system once it 
has been fixed

 Load balancing

 Incremental scalability

 Automatically include new computers in scheduling

 Middleware needs to recognize that processes may switch between machines



Parallelizing Computation

Effective use of a cluster requires executing 
software from a single application in parallel

Three approaches are:

Parallelizing complier

• Determines at compile time 
which parts of an application 
can be executed in parallel

• These are then split off to be 
assigned to different 
computers in the cluster

Parallelized 
application

• Application written from the 
outset to run on a cluster and 
uses message passing to 
move data between cluster 
nodes

Parametric computing

• Can be used if the essence of 
the application is an 
algorithm or program that 
must be executed a large 
number of times, each time 
with a different set of starting 
conditions or parameters
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Clusters Compared to SMP

 Easier to manage and 
configure

 Much closer to the original 
single processor model for 
which nearly all applications 
are written

 Less physical space and lower 
power consumption

 Well established and stable

 Far superior in terms of 
incremental and absolute 
scalability

 Superior in terms of 
availability

 All components of the system 
can readily be made highly 
redundant

SMP Clustering

 Both provide a configuration with multiple processors to 
support high demand applications

 Both solutions are available commercially
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Nonuniform Memory Access 

(NUMA)

 Alternative to SMP and clustering

 Uniform memory access (UMA)

 All processors have access to all parts of main memory using loads and stores

 Access time to all regions of memory is the same

 Access time to memory for different processors is the same

 Nonuniform memory access (NUMA)

 All processors have access to all parts of main memory using loads and stores

 Access time of processor differs depending on which region of main memory 
is being accessed

 Different processors access different regions of memory at different speeds

 Cache-coherent NUMA (CC-NUMA)

 A NUMA system in which cache coherence is maintained among the caches of 
the various processors



Motivation

SMP has practical limit to 
number of processors that 
can be used

• Bus traffic limits to between 16 and 
64 processors

In clusters each node has its 
own private main memory

• Applications do not see a large 
global memory

• Coherency is maintained by 
software rather than hardware

NUMA retains SMP flavor 
while giving large scale 

multiprocessing

Objective with NUMA is to 
maintain a transparent 

system wide memory while 
permitting multiple 

multiprocessor nodes, each 
with its own bus or internal 

interconnect system
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NUMA Pros and Cons

 Main advantage of a CC-

NUMA system is that it can 

deliver effective performance 

at higher levels of parallelism 

than SMP without requiring 

major software changes

 Bus traffic on any individual 

node is limited to a demand 

that the bus can handle

 If many of the memory 

accesses are to remote nodes, 

performance begins to break 

down

 Does not transparently look 

like an SMP

 Software changes will be 

required to move an operating 

system and applications from 

an SMP to a CC-NUMA system

 Concern with availability
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Vector Computation

 There is a need for computers to solve mathematical problems of 

physical processes in disciplines such as aerodynamics, seismology, 

meteorology, and atomic, nuclear, and plasma physics

 Need for high precision and a program that repetitively performs 

floating point arithmetic calculations on large arrays of numbers

 Most of these problems fall into the category known as continuous-field 
simulation

 Supercomputers were developed to handle these types of problems

 However they have limited use and a limited market because of their price tag

 There is a constant demand to increase performance

 Array processor

 Designed to address the need for vector computation

 Configured as peripheral devices by both mainframe and minicomputer users 
to run the vectorized portions of programs
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4.2 Multicore Computers
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4.1 Outline

 Hardware Performance Issues

 Software Performance Issues

 Multicore Organization

 Intel x86 Multicore Organization

 ARM11 MPCore

 IBM zEnterprise 196 Mainframe
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Alternative Chip 

Organization



+ Processor Trends
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Power Consumption

 By 2015 we can expect to see microprocessor chips with 

about 100 billion transistors on a 300 mm2 die

 Assuming that about 50-60% of the chip area is devoted to 

memory, the chip will support cache memory of about 100 MB 

and leave over 1 billion transistors available for logic

 How to use all those logic transistors is a key design issue

 Pollack’s Rule

 States that performance increase is roughly proportional to square 

root of increase in complexity
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Effective Applications for Multicore 

Processors

 Multi-threaded native applications

 Characterized by having a small number of highly threaded 
processes

 Lotus Domino, Siebel CRM (Customer Relationship Manager)

 Multi-process applications

 Characterized by the presence of many single-threaded processes

 Oracle, SAP, PeopleSoft

 Java applications

 Java Virtual Machine is a multi-threaded process that provides scheduling 
and memory management for Java applications

 Sun’s Java Application Server, BEA’s Weblogic, IBM Websphere, Tomcat

 Multi-instance applications

 One application running multiple times

 If multiple application instances require some degree of isolation, 
virtualization technology can be used to provide each of them with its own 
separate and secure environment



Multicore 

Organization 

Alternatives
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Intel Core Duo 

Block Diagram
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Intel x86 Multicore Organization Core Duo

 Advanced Programmable Interrupt Controller (APIC)

 Provides inter-processor interrupts which allow any process to 
interrupt any other processor or set of processors

 Accepts I/O interrupts and routes these to the appropriate core

 Includes a timer which can be set by the OS to generate an 
interrupt to the local core

 Power management logic

 Responsible for reducing power consumption when possible, 
thus increasing battery life for mobile platforms

 Monitors thermal conditions and CPU activity and adjusts 
voltage levels and power consumption appropriately

 Includes an advanced power-gating capability that allows for an 
ultra fine grained logic control that turns on individual processor 
logic subsystems only if and when they are needed

Continued . . .
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Intel x86 Multicore Organization Core Duo

 2MB shared L2 cache

 Cache logic allows for a dynamic allocation of cache space based 

on current core needs

 MESI support for L1 caches

 Extended to support multiple Core Duo in SMP

 L2 cache controller allows the system to distinguish between a 

situation in which data are shared by the two local cores, and a 

situation in which the data are shared by one or more caches on 

the die as well as by an agent on the external bus

 Bus interface

 Connects to the external bus, known as the Front Side Bus, which 

connects to main memory, I/O controllers, and other processor 

chips



Intel Core i7-990X Block Diagram
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Interrupt Handling

 Distributed Interrupt Controller (DIC) collates interrupts from a large          
number of sources

 It provides:
 Masking of interrupts

 Prioritization of the interrupts

 Distribution of the interrupts to the target MP11 CPUs

 Tracking status of interrupts

 Generation of interrupts by software

 Is a single function unit that is placed in the system alongside MP11 CPUs

 Memory mapped

 Accessed by CPUs via private interface through SCU

 Provides a means of routing an interrupt request to a single CPU or multiple 
CPUs, as required

 Provide a means of interprocessor communication so that a thread on one CPU 
can cause activity by a thread on another CPU
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DIC Routing

 The DIC can route an interrupt to one or more CPUs in the 
following three ways: 

 An interrupt can be directed to a specific processor only

 An interrupt can be directed to a defined group of processors

 An interrupt can be directed to all processors

 OS can generate interrupt to:

 All but self

 Self

 Other specific CPU

 Typically combined with shared memory for inter-process 
communication

 16 interrupt IDs available for inter-processor communication
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Interrupt States

Inactive

• Is one that is nonasserted, 
or which in a multi-
processing environment 
has been completely 
processed by that CPU but 
can still be either Pending 
or Active in some of the 
CPUs to which it is 
targeted, and so might not 
have been cleared at the 
interrupt source

Pending

• Is one that has been 
asserted, and for which 
processing has not started 
on that CPU

Active

• Is one that has been started 
on that CPU, but processing 
is not complete

• An Active interrupt can be 
pre-empted when a new 
interrupt of higher priority 
interrupts MP11 CPU 
interrupt processing

From the point of view of an MP11 CPU, an interrupt can be:
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Interrupt Sources

 Inter-process Interrupts (IPI)
 Private to CPU

 ID0-ID15

 Software triggered

 Priority depends on target CPU not source

 Private timer and/or watchdog interrupt
 ID29 and ID30

 Legacy FIQ line
 Legacy FIQ pin, per CPU, bypasses interrupt distributor

 Directly drives interrupts to CPU

 Hardware
 Triggered by programmable events on associated interrupt lines

 Up to 224 lines

 Start at ID32



ARM11 

MPCore 

Interrupt 

Distributor 
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Cache Coherency

 Snoop Control Unit (SCU) resolves most shared data bottleneck issues

 L1 cache coherency scheme is based on the MESI protocol

 Direct Data Intervention (DDI)

 Enables copying clean data between L1 caches without accessing external memory

 Reduces read after write from L1 to L2

 Can resolve local L1 miss from remote L1 rather than L2

 Duplicated tag RAMs

 Cache tags implemented as separate block of RAM

 Same length as number of lines in cache

 Duplicates used by SCU to check data availability before sending coherency commands

 Only send to CPUs that must update coherent data cache

 Migratory lines

 Allows moving dirty data between CPUs without writing to L2 and reading back from 

external memory


