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4.1 Outline

 Multiple Processor Organizations

 Symmetric Multiprocessors

 Cache Coherence and the MESI Protocol

 Multithreading and Chip Multiprocessors

 Clusters

 Nonuniform Memory Access 

 Vector Computation
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Multiple Processor Organization

 Single instruction, single data 
(SISD) stream

 Single processor executes a 
single instruction stream to 
operate on data stored in a single 
memory

 Uniprocessors fall into this 
category

 Single instruction, multiple data 
(SIMD) stream

 A single machine instruction 
controls the simultaneous 
execution of a number of 
processing elements on a 
lockstep basis

 Vector and array processors fall 
into this category

 Multiple instruction, single data 
(MISD) stream

 A sequence of data is transmitted 
to a set of processors, each of 
which executes a different 
instruction sequence

 Not commercially implemented

 Multiple instruction, multiple 
data (MIMD) stream

 A set of processors 
simultaneously execute different 
instruction sequences on different 
data sets

 SMPs, clusters and NUMA systems 
fit this category







Symmetric Multiprocessor (SMP)

A stand alone computer with 
the following characteristics:

Two or more 
similar 

processors of 
comparable 

capacity

Processors 
share same 
memory and 
I/O facilities

• Processors are 
connected by a 
bus or other 
internal 
connection

• Memory access 
time is 
approximately 
the same for 
each processor

All 
processors 
share access 
to I/O 
devices

• Either through 
same channels 
or different 
channels giving 
paths to same 
devices

All 
processors 

can perform 
the same 
functions 
(hence 

“symmetric”)

System 
controlled by 
integrated 
operating 
system

• Provides 
interaction 
between 
processors and 
their programs 
at job, task, file 
and data 
element levels



Multiprogramming

and 

Multiprocessing



Symmetric Multiprocessor 

Organization
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 Simplicity

 Simplest approach to multiprocessor organization

 Flexibility

 Generally easy to expand the system by attaching more 

processors to the bus

 Reliability

 The bus is essentially a passive medium and the failure of any 

attached device should not cause failure of the whole system

The bus organization has several 

attractive features:
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 Main drawback is performance

 All memory references pass through the common bus

 Performance is limited by bus cycle time

 Each processor should have cache memory

 Reduces the number of bus accesses

 Leads to problems with cache coherence

 If a word is altered in one cache it could conceivably invalidate a 

word in another cache

 To prevent this the other processors must be alerted that an 

update has taken place

 Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:
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Multiprocessor Operating System 

Design Considerations

 Simultaneous concurrent processes

 OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

 OS tables and management structures must be managed properly to avoid deadlock or invalid operations

 Scheduling

 Any processor may perform scheduling so conflicts must be avoided

 Scheduler must assign ready processes to available processors

 Synchronization

 With multiple active processes having potential access to shared address spaces or I/O resources, care must be 
taken to provide effective synchronization

 Synchronization is a facility that enforces mutual exclusion and event ordering

 Memory management

 In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the available 
hardware parallelism to achieve the best performance

 Paging mechanisms on different processors must be coordinated to enforce consistency when several processors 
share a page or segment and to decide on page replacement

 Reliability and fault tolerance

 OS should provide graceful degradation in the face of processor failure

 Scheduler and other portions of the operating system must recognize the loss of a processor and restructure 
accordingly



+
Cache Coherence

 Attempt to avoid the need for additional hardware circuitry 

and logic by relying on the compiler and operating system to 

deal with the problem

 Attractive because the overhead of detecting potential 

problems is transferred from run time to compile time, and 

the design complexity is transferred from hardware to 

software

 However, compile-time software approaches generally must make 

conservative decisions, leading to inefficient cache utilization

Software Solutions
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Cache Coherence

 Generally referred to as cache coherence protocols

 These solutions provide dynamic recognition at run time of 
potential inconsistency conditions

 Because the problem is only dealt with when it actually arises 
there is more effective use of caches, leading to improved 
performance over a software approach

 Approaches are transparent to the programmer and the 
compiler, reducing the software development burden

 Can be divided into two categories:

 Directory protocols

 Snoopy protocols

Hardware-Based Solutions



Directory Protocols

Collect and 
maintain 

information about 
copies of data in 

cache

Directory stored in 
main memory

Requests are 
checked against 

directory

Appropriate 
transfers are 
performed

Creates central 
bottleneck

Effective in large 
scale systems with 

complex 
interconnection 

schemes



Snoopy Protocols

 Distribute the responsibility for maintaining cache coherence 
among all of the cache controllers in a multiprocessor

 A cache must recognize when a line that it holds is shared with other 
caches

 When updates are performed on a shared cache line, it must be 
announced to other caches by a broadcast mechanism

 Each cache controller is able to “snoop” on the network to observe 
these broadcast notifications and react accordingly

 Suited to bus-based multiprocessor because the shared bus 
provides a simple means for broadcasting and snooping

 Care must be taken that the increased bus traffic required for 
broadcasting and snooping does not cancel out the gains from the 
use of local caches

 Two basic approaches have been explored:

 Write invalidate

 Write update (or write broadcast)



+
Write Invalidate

 Multiple readers, but only one writer at a time

 When a write is required, all other caches of the line are 

invalidated

 Writing processor then has exclusive (cheap) access until 

line is required by another processor

 Most widely used in commercial multiprocessor systems 

such as the Pentium 4 and PowerPC

 State of every line is marked as modified, exclusive, shared 

or invalid

 For this reason the write-invalidate protocol is called MESI
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Write Update

 Can be multiple readers and writers

 When a processor wishes to update a shared line the word to 

be updated is distributed to all others and caches containing 

that line can update it

 Some systems use an adaptive mixture of both write-

invalidate and write-update mechanisms
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MESI Protocol

 Modified

 The line in the cache has been modified and is available only in 
this cache

 Exclusive

 The line in the cache is the same as that in main memory and is 
not present in any other cache

 Shared

 The line in the cache is the same as that in main memory and may 
be present in another cache

 Invalid

 The line in the cache does not contain valid data 

To provide cache consistency on an SMP the data cache 

supports a protocol known as MESI:
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Multithreading and Chip 

Multiprocessors

 Processor performance can be measured by the rate at which it 
executes instructions

 MIPS rate = f * IPC

 f = processor clock frequency, in MHz

 IPC = average instructions per cycle

 Increase performance by increasing clock frequency and 
increasing instructions that complete during cycle

 Multithreading

 Allows for a high degree of instruction-level parallelism without 
increasing circuit complexity or power consumption

 Instruction stream is divided into several smaller streams, known as 
threads, that can be executed in parallel



Definitions of Threads

and Processes Thread in multithreaded 
processors may or may not be 

the same as the concept of 
software threads in a 

multiprogrammed operating 
system

Thread is concerned with 
scheduling and execution, 

whereas a process is 
concerned with both 

scheduling/execution and 
resource and resource 

ownership

Process: 

• An instance of program running on 
computer

• Two key characteristics:

• Resource ownership

• Scheduling/execution

Process switch

• Operation that switches the processor 
from one process to another by saving all 
the process control data, registers, and 
other information for the first and 
replacing them with the process 
information for the second

Thread: 

• Dispatchable unit of work within a 
process

• Includes processor context (which 
includes the program counter and 
stack pointer) and data area for stack

• Executes sequentially and is 
interruptible so that the processor can 
turn to another thread

Thread switch

• The act of switching processor control 
between threads within the same 
process

• Typically less costly than process 
switch
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Implicit and Explicit 

Multithreading

 All commercial processors and most 

experimental ones use explicit multithreading

 Concurrently execute instructions from different 

explicit threads

 Interleave instructions from different threads on 

shared pipelines or parallel execution on parallel 

pipelines

 Implicit multithreading is concurrent execution 

of multiple threads extracted from single 

sequential program

 Implicit threads defined statically by compiler or 

dynamically by hardware



+ Approaches to Explicit 

Multithreading

 Interleaved

 Fine-grained

 Processor deals with two or 
more thread contexts at a 
time

 Switching thread at each 
clock cycle

 If thread is blocked it is 
skipped

 Simultaneous (SMT)

 Instructions are 
simultaneously issued from 
multiple threads to 
execution units of 
superscalar processor

 Blocked 

 Coarse-grained 

 Thread executed until event 
causes delay

 Effective on in-order 
processor

 Avoids pipeline stall

 Chip multiprocessing

 Processor is replicated on a 
single chip

 Each processor handles 
separate threads

 Advantage is that the 
available logic area on a chip 
is used effectively
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Example Systems

 More recent models of the 

Pentium 4 use a multithreading 

technique that Intel refers to as 

hyperthreading

 Approach is to use SMT with 

support for two threads

 Thus the single multithreaded 

processor is logically two 

processors

 Chip used in high-end 
PowerPC products

 Combines chip 
multiprocessing with SMT

 Has two separate processors, 
each of which is a multithreaded 
processor capable of supporting 
two threads concurrently using 
SMT

 Designers found that having two 
two-way SMT processors on a 
single chip provided superior 
performance to a single four-
way SMT processor

Pentium 4 IBM Power5
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Clusters

 Alternative to SMP as an approach to providing 
high performance and high availability

 Particularly attractive for server applications

 Defined as:

 A group of interconnected whole computers working 
together as a unified computing resource that can 
create the illusion of being one machine

 (The term whole computer means a system that can run 
on its own, apart from the cluster)

 Each computer in a cluster is called a node

 Benefits:

 Absolute scalability

 Incremental scalability

 High availability

 Superior price/performance
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Cluster 

Configurations
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Operating System Design Issues

 How failures are managed depends on the clustering method used

 Two approaches:

 Highly available clusters

 Fault tolerant clusters

 Failover

 The function of switching applications and data resources over from a failed system 
to an alternative system in the cluster

 Failback

 Restoration of applications and data resources to the original system once it 
has been fixed

 Load balancing

 Incremental scalability

 Automatically include new computers in scheduling

 Middleware needs to recognize that processes may switch between machines



Parallelizing Computation

Effective use of a cluster requires executing 
software from a single application in parallel

Three approaches are:

Parallelizing complier

• Determines at compile time 
which parts of an application 
can be executed in parallel

• These are then split off to be 
assigned to different 
computers in the cluster

Parallelized 
application

• Application written from the 
outset to run on a cluster and 
uses message passing to 
move data between cluster 
nodes

Parametric computing

• Can be used if the essence of 
the application is an 
algorithm or program that 
must be executed a large 
number of times, each time 
with a different set of starting 
conditions or parameters
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Clusters Compared to SMP

 Easier to manage and 
configure

 Much closer to the original 
single processor model for 
which nearly all applications 
are written

 Less physical space and lower 
power consumption

 Well established and stable

 Far superior in terms of 
incremental and absolute 
scalability

 Superior in terms of 
availability

 All components of the system 
can readily be made highly 
redundant

SMP Clustering

 Both provide a configuration with multiple processors to 
support high demand applications

 Both solutions are available commercially
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Nonuniform Memory Access 

(NUMA)

 Alternative to SMP and clustering

 Uniform memory access (UMA)

 All processors have access to all parts of main memory using loads and stores

 Access time to all regions of memory is the same

 Access time to memory for different processors is the same

 Nonuniform memory access (NUMA)

 All processors have access to all parts of main memory using loads and stores

 Access time of processor differs depending on which region of main memory 
is being accessed

 Different processors access different regions of memory at different speeds

 Cache-coherent NUMA (CC-NUMA)

 A NUMA system in which cache coherence is maintained among the caches of 
the various processors



Motivation

SMP has practical limit to 
number of processors that 
can be used

• Bus traffic limits to between 16 and 
64 processors

In clusters each node has its 
own private main memory

• Applications do not see a large 
global memory

• Coherency is maintained by 
software rather than hardware

NUMA retains SMP flavor 
while giving large scale 

multiprocessing

Objective with NUMA is to 
maintain a transparent 

system wide memory while 
permitting multiple 

multiprocessor nodes, each 
with its own bus or internal 

interconnect system
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NUMA Pros and Cons

 Main advantage of a CC-

NUMA system is that it can 

deliver effective performance 

at higher levels of parallelism 

than SMP without requiring 

major software changes

 Bus traffic on any individual 

node is limited to a demand 

that the bus can handle

 If many of the memory 

accesses are to remote nodes, 

performance begins to break 

down

 Does not transparently look 

like an SMP

 Software changes will be 

required to move an operating 

system and applications from 

an SMP to a CC-NUMA system

 Concern with availability
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Vector Computation

 There is a need for computers to solve mathematical problems of 

physical processes in disciplines such as aerodynamics, seismology, 

meteorology, and atomic, nuclear, and plasma physics

 Need for high precision and a program that repetitively performs 

floating point arithmetic calculations on large arrays of numbers

 Most of these problems fall into the category known as continuous-field 
simulation

 Supercomputers were developed to handle these types of problems

 However they have limited use and a limited market because of their price tag

 There is a constant demand to increase performance

 Array processor

 Designed to address the need for vector computation

 Configured as peripheral devices by both mainframe and minicomputer users 
to run the vectorized portions of programs
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4.2 Multicore Computers
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4.1 Outline

 Hardware Performance Issues

 Software Performance Issues

 Multicore Organization

 Intel x86 Multicore Organization

 ARM11 MPCore

 IBM zEnterprise 196 Mainframe
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Alternative Chip 

Organization



+ Processor Trends
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Power Consumption

 By 2015 we can expect to see microprocessor chips with 

about 100 billion transistors on a 300 mm2 die

 Assuming that about 50-60% of the chip area is devoted to 

memory, the chip will support cache memory of about 100 MB 

and leave over 1 billion transistors available for logic

 How to use all those logic transistors is a key design issue

 Pollack’s Rule

 States that performance increase is roughly proportional to square 

root of increase in complexity



+
Effective Applications for Multicore 

Processors

 Multi-threaded native applications

 Characterized by having a small number of highly threaded 
processes

 Lotus Domino, Siebel CRM (Customer Relationship Manager)

 Multi-process applications

 Characterized by the presence of many single-threaded processes

 Oracle, SAP, PeopleSoft

 Java applications

 Java Virtual Machine is a multi-threaded process that provides scheduling 
and memory management for Java applications

 Sun’s Java Application Server, BEA’s Weblogic, IBM Websphere, Tomcat

 Multi-instance applications

 One application running multiple times

 If multiple application instances require some degree of isolation, 
virtualization technology can be used to provide each of them with its own 
separate and secure environment



Multicore 

Organization 

Alternatives
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Intel Core Duo 

Block Diagram
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Intel x86 Multicore Organization Core Duo

 Advanced Programmable Interrupt Controller (APIC)

 Provides inter-processor interrupts which allow any process to 
interrupt any other processor or set of processors

 Accepts I/O interrupts and routes these to the appropriate core

 Includes a timer which can be set by the OS to generate an 
interrupt to the local core

 Power management logic

 Responsible for reducing power consumption when possible, 
thus increasing battery life for mobile platforms

 Monitors thermal conditions and CPU activity and adjusts 
voltage levels and power consumption appropriately

 Includes an advanced power-gating capability that allows for an 
ultra fine grained logic control that turns on individual processor 
logic subsystems only if and when they are needed

Continued . . .
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Intel x86 Multicore Organization Core Duo

 2MB shared L2 cache

 Cache logic allows for a dynamic allocation of cache space based 

on current core needs

 MESI support for L1 caches

 Extended to support multiple Core Duo in SMP

 L2 cache controller allows the system to distinguish between a 

situation in which data are shared by the two local cores, and a 

situation in which the data are shared by one or more caches on 

the die as well as by an agent on the external bus

 Bus interface

 Connects to the external bus, known as the Front Side Bus, which 

connects to main memory, I/O controllers, and other processor 

chips



Intel Core i7-990X Block Diagram
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Interrupt Handling

 Distributed Interrupt Controller (DIC) collates interrupts from a large          
number of sources

 It provides:
 Masking of interrupts

 Prioritization of the interrupts

 Distribution of the interrupts to the target MP11 CPUs

 Tracking status of interrupts

 Generation of interrupts by software

 Is a single function unit that is placed in the system alongside MP11 CPUs

 Memory mapped

 Accessed by CPUs via private interface through SCU

 Provides a means of routing an interrupt request to a single CPU or multiple 
CPUs, as required

 Provide a means of interprocessor communication so that a thread on one CPU 
can cause activity by a thread on another CPU
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DIC Routing

 The DIC can route an interrupt to one or more CPUs in the 
following three ways: 

 An interrupt can be directed to a specific processor only

 An interrupt can be directed to a defined group of processors

 An interrupt can be directed to all processors

 OS can generate interrupt to:

 All but self

 Self

 Other specific CPU

 Typically combined with shared memory for inter-process 
communication

 16 interrupt IDs available for inter-processor communication
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Interrupt States

Inactive

• Is one that is nonasserted, 
or which in a multi-
processing environment 
has been completely 
processed by that CPU but 
can still be either Pending 
or Active in some of the 
CPUs to which it is 
targeted, and so might not 
have been cleared at the 
interrupt source

Pending

• Is one that has been 
asserted, and for which 
processing has not started 
on that CPU

Active

• Is one that has been started 
on that CPU, but processing 
is not complete

• An Active interrupt can be 
pre-empted when a new 
interrupt of higher priority 
interrupts MP11 CPU 
interrupt processing

From the point of view of an MP11 CPU, an interrupt can be:



+
Interrupt Sources

 Inter-process Interrupts (IPI)
 Private to CPU

 ID0-ID15

 Software triggered

 Priority depends on target CPU not source

 Private timer and/or watchdog interrupt
 ID29 and ID30

 Legacy FIQ line
 Legacy FIQ pin, per CPU, bypasses interrupt distributor

 Directly drives interrupts to CPU

 Hardware
 Triggered by programmable events on associated interrupt lines

 Up to 224 lines

 Start at ID32



ARM11 

MPCore 

Interrupt 

Distributor 
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Cache Coherency

 Snoop Control Unit (SCU) resolves most shared data bottleneck issues

 L1 cache coherency scheme is based on the MESI protocol

 Direct Data Intervention (DDI)

 Enables copying clean data between L1 caches without accessing external memory

 Reduces read after write from L1 to L2

 Can resolve local L1 miss from remote L1 rather than L2

 Duplicated tag RAMs

 Cache tags implemented as separate block of RAM

 Same length as number of lines in cache

 Duplicates used by SCU to check data availability before sending coherency commands

 Only send to CPUs that must update coherent data cache

 Migratory lines

 Allows moving dirty data between CPUs without writing to L2 and reading back from 

external memory


