
+

SEN361 Computer Organization 

Prof. Dr. Hasan Hüseyin BALIK

(10th Week)



+

Outline

3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and 

Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar 

Processors



+ 

3.5 Instruction-Level Parallelism and 
Superscalar Processors



+

3.5 Outline

 Overview

 Design Issues

 Pentium 4

 Arm Cortex-A8



Superscalar

Term first coined in 
1987

Refers to a machine that 
is designed to improve 
the performance of the 

execution of scalar 
instructions

In most applications the 
bulk of the operations 

are on scalar quantities

Represents the next 
step in the evolution of 

high-performance 
general-purpose 

processors

Essence of the approach 
is the ability to execute 

instructions 
independently and 

concurrently in different 
pipelines

Concept can be further 
exploited by allowing 

instructions to be 
executed in an order 

different from the 
program order

Overview



Superscalar 

Organization 

Compared to 

Ordinary 

Scalar 

Organization



+

Comparison 

of Superscalar 

and 

Superpipeline

Approaches



+
Constraints 

 Instruction level parallelism

 Refers to the degree to which the instructions of a program can be 

executed in parallel

 A combination of compiler based optimization and hardware 

techniques can be used to maximize instruction level parallelism

 Limitations:

 True data dependency

 Procedural dependency

 Resource conflicts

 Output dependency

 Antidependency



+

Effect of 

Dependencies



+
Design Issues

 Instruction level parallelism

 Instructions in a sequence are independent

 Execution can be overlapped

 Governed by data and procedural dependency

 Machine Parallelism

 Ability to take advantage of instruction level parallelism

 Governed by number of parallel pipelines

Instruction-Level Parallelism 

and Machine Parallelism



+
Instruction Issue Policy

 Instruction issue

 Refers to the process of initiating instruction execution in the processor’s 
functional units

 Instruction issue policy

 Refers to the protocol used to issue instructions

 Instruction issue occurs when instruction moves from the decode stage of the 
pipeline to the first execute stage of the pipeline

 Three types of orderings are important:

 The order in which instructions are fetched

 The order in which instructions are executed

 The order in which instructions update the contents of register and memory 
locations

 Superscalar instruction issue policies can be grouped into the following 
categories:

 In-order issue with in-order completion

 In-order issue with out-of-order completion

 Out-of-order issue with out-of-order completion



+

Superscalar 

Instruction Issue 

and Completion 

Policies



Organization for Out-of-Order Issue 

with Out-of-Order Completion



Register Renaming

Output and antidependencies occur 
because register contents may not reflect 
the correct ordering from the program

May result in a pipeline stall

Registers allocated dynamically



+
Branch Prediction

 Any high-performance pipelined machine must address the 
issue of dealing with branches

 Intel 80486 addressed the problem by fetching both the next 
sequential instruction after a branch and speculatively fetching 
the branch target instruction

 RISC machines:

 Delayed branch strategy was explored

 Processor always executes the single instruction that immediately 
follows the branch

 Keeps the pipeline full while the processor fetches a new instruction 
stream

 Superscalar machines:

 Delayed branch strategy has less appeal

 Have returned to pre-RISC techniques of branch prediction



Conceptual Depiction of 

Superscalar Processing



+
Superscalar Implementation

 Key elements:

 Instruction fetch strategies that simultaneously fetch multiple 

instruction

 Logic for determining true dependencies involving register 

values, and mechanisms for communicating these values to where 

they are needed during execution

 Mechanisms for initiating, or issuing, multiple instructions in 

parallel

 Resources for parallel execution of multiple instructions, 

including multiple pipelined functional units and memory 

hierarchies capable of simultaneously servicing multiple memory 

references

 Mechanisms for committing the process state in correct order



Pentium 4 Block Diagram



Pentium 4 Pipeline



+

Pentium 4

Pipeline 

Operation 

Page 1 of 2



+

Pentium 4

Pipeline 

Operation 

Page 2 of 2



ARM 

CORTEX-A8



ARM 

Cortex-A8 

Integer 

Pipeline



+
Instruction Fetch Unit

 Predicts instruction stream

 Fetches instructions from the L1 

instruction cache

 Places the fetched instructions 

into a buffer for consumption by 

the decode pipeline

 Also includes the L1 instruction 

cache

 Speculative (there is no 

guarantee that they are 

executed)

 Branch or exceptional 

instruction in the code stream 

can cause a pipeline flush

 Can fetch up to four instructions 

per cycle

 F0

 Address generation unit (AGU) 

generates a new virtual address

 Not counted as part of the 13-stage 

pipeline

 F1

 The calculated address is used to 

fetch instructions from the L1 

instruction cache

 In parallel, the fetch address is used 

to access branch prediction arrays

 F3

 Instruction data are placed in the 

instruction queue

 If an instruction results in branch 

prediction, new target address is 

sent to the address generation unit



+
Instruction Decode Unit

 Decodes and sequences all ARM and Thumb instructions

 Dual pipeline structure, pipe0 and pipe1

 Two instructions can progress at a time

 Pipe0 contains the older instruction in program order

 If instruction in pipe0 cannot issue, instruction in pipe1 will not issue

 All issued instructions progress in order

 Results written back to register file at end of execution 
pipeline

 Prevents WAR hazards

 Keeps track of WAW hazards and recovery from flush conditions 
straightforward

 Main concern of decode pipeline is prevention of RAW 
hazards



+
Instruction Processing Stages

 D0

 Thumb instructions decompressed and preliminary decode is 
performed

 D1

 Instruction decode is completed

 D2

 Writes instructions into and read instructions from pending/replay 
queue

 D3

 Contains the instruction scheduling logic

 Scoreboard predicts register availability using static scheduling

 Hazard checking is done

 D4

 Final decode for control signals for integer execute load/store units



Cortex-A8 Memory System Effects on Instruction Timings



Cortex-A8 Dual-Issue Restrictions



+
Integer Execute Unit

 Consists of:

 Two symmetric arithmetic logic unit 

(ALU) pipelines

 An address generator for load and 

store instructions

 The multiply pipeline

 The instruction execute unit:

 Executes all integer ALU and multiply 

operations, including flag generation

 Generates the virtual addresses for 

loads and stores and the base write-

back value, when required

 Supplies formatted data for stores and 

forwards data and flags

 Processes branches and other changes 

of instruction stream and evaluates 

instruction condition codes

 For ALU instructions, either pipeline 

can be used, consisting of the 

following stages:

 E0 

 Access register file

 Up to six registers for two instructions

 E1

 Barrel shifter if needed.

 E2 

 ALU function

 E3

 If needed, completes saturation arithmetic

 E4

 Change in control flow prioritized and 

processed

 E5

 Results written back to register file



+ 

Load/Store Pipeline

 Runs parallel to integer pipeline

 E1

 Memory address generated from base and index 

register

 E2

 Address applied to cache arrays

 E3

 Load -- data are returned and formatted

 Store -- data are formatted and ready to be 

written to cache

 E4

 Updates L2 cache, if required

 E5

 Results are written back into the register file



Cortex-A8 

Example Dual 

Issue Instruction 

Sequence for 

Integer Pipeline



ARM Cortex-A8 NEON & Floating-Point Pipeline


