
+

SEN361 Computer Organization 

Prof. Dr. Hasan Hüseyin BALIK

(10th Week)



+

Outline

3. The Central Processing Unit

3.1 Instruction Sets: Characteristics and Functions

3.2 Instruction Sets: Addressing Modes and 

Formats

3.3 Processor Structure and Function

3.4 Reduced Instruction Set Computers

3.5 Instruction-Level Parallelism and Superscalar 

Processors



+ 

3.5 Instruction-Level Parallelism and 
Superscalar Processors



+

3.5 Outline

 Overview

 Design Issues

 Pentium 4

 Arm Cortex-A8



Superscalar

Term first coined in 
1987

Refers to a machine that 
is designed to improve 
the performance of the 

execution of scalar 
instructions

In most applications the 
bulk of the operations 

are on scalar quantities

Represents the next 
step in the evolution of 

high-performance 
general-purpose 

processors

Essence of the approach 
is the ability to execute 

instructions 
independently and 

concurrently in different 
pipelines

Concept can be further 
exploited by allowing 

instructions to be 
executed in an order 

different from the 
program order

Overview



Superscalar 

Organization 

Compared to 

Ordinary 

Scalar 

Organization



+

Comparison 

of Superscalar 

and 

Superpipeline

Approaches



+
Constraints 

 Instruction level parallelism

 Refers to the degree to which the instructions of a program can be 

executed in parallel

 A combination of compiler based optimization and hardware 

techniques can be used to maximize instruction level parallelism

 Limitations:

 True data dependency

 Procedural dependency

 Resource conflicts

 Output dependency

 Antidependency



+

Effect of 

Dependencies



+
Design Issues

 Instruction level parallelism

 Instructions in a sequence are independent

 Execution can be overlapped

 Governed by data and procedural dependency

 Machine Parallelism

 Ability to take advantage of instruction level parallelism

 Governed by number of parallel pipelines

Instruction-Level Parallelism 

and Machine Parallelism



+
Instruction Issue Policy

 Instruction issue

 Refers to the process of initiating instruction execution in the processor’s 
functional units

 Instruction issue policy

 Refers to the protocol used to issue instructions

 Instruction issue occurs when instruction moves from the decode stage of the 
pipeline to the first execute stage of the pipeline

 Three types of orderings are important:

 The order in which instructions are fetched

 The order in which instructions are executed

 The order in which instructions update the contents of register and memory 
locations

 Superscalar instruction issue policies can be grouped into the following 
categories:

 In-order issue with in-order completion

 In-order issue with out-of-order completion

 Out-of-order issue with out-of-order completion



+

Superscalar 

Instruction Issue 

and Completion 

Policies



Organization for Out-of-Order Issue 

with Out-of-Order Completion



Register Renaming

Output and antidependencies occur 
because register contents may not reflect 
the correct ordering from the program

May result in a pipeline stall

Registers allocated dynamically



+
Branch Prediction

 Any high-performance pipelined machine must address the 
issue of dealing with branches

 Intel 80486 addressed the problem by fetching both the next 
sequential instruction after a branch and speculatively fetching 
the branch target instruction

 RISC machines:

 Delayed branch strategy was explored

 Processor always executes the single instruction that immediately 
follows the branch

 Keeps the pipeline full while the processor fetches a new instruction 
stream

 Superscalar machines:

 Delayed branch strategy has less appeal

 Have returned to pre-RISC techniques of branch prediction



Conceptual Depiction of 

Superscalar Processing



+
Superscalar Implementation

 Key elements:

 Instruction fetch strategies that simultaneously fetch multiple 

instruction

 Logic for determining true dependencies involving register 

values, and mechanisms for communicating these values to where 

they are needed during execution

 Mechanisms for initiating, or issuing, multiple instructions in 

parallel

 Resources for parallel execution of multiple instructions, 

including multiple pipelined functional units and memory 

hierarchies capable of simultaneously servicing multiple memory 

references

 Mechanisms for committing the process state in correct order



Pentium 4 Block Diagram



Pentium 4 Pipeline



+

Pentium 4

Pipeline 

Operation 

Page 1 of 2



+

Pentium 4

Pipeline 

Operation 

Page 2 of 2



ARM 

CORTEX-A8



ARM 

Cortex-A8 

Integer 

Pipeline



+
Instruction Fetch Unit

 Predicts instruction stream

 Fetches instructions from the L1 

instruction cache

 Places the fetched instructions 

into a buffer for consumption by 

the decode pipeline

 Also includes the L1 instruction 

cache

 Speculative (there is no 

guarantee that they are 

executed)

 Branch or exceptional 

instruction in the code stream 

can cause a pipeline flush

 Can fetch up to four instructions 

per cycle

 F0

 Address generation unit (AGU) 

generates a new virtual address

 Not counted as part of the 13-stage 

pipeline

 F1

 The calculated address is used to 

fetch instructions from the L1 

instruction cache

 In parallel, the fetch address is used 

to access branch prediction arrays

 F3

 Instruction data are placed in the 

instruction queue

 If an instruction results in branch 

prediction, new target address is 

sent to the address generation unit



+
Instruction Decode Unit

 Decodes and sequences all ARM and Thumb instructions

 Dual pipeline structure, pipe0 and pipe1

 Two instructions can progress at a time

 Pipe0 contains the older instruction in program order

 If instruction in pipe0 cannot issue, instruction in pipe1 will not issue

 All issued instructions progress in order

 Results written back to register file at end of execution 
pipeline

 Prevents WAR hazards

 Keeps track of WAW hazards and recovery from flush conditions 
straightforward

 Main concern of decode pipeline is prevention of RAW 
hazards



+
Instruction Processing Stages

 D0

 Thumb instructions decompressed and preliminary decode is 
performed

 D1

 Instruction decode is completed

 D2

 Writes instructions into and read instructions from pending/replay 
queue

 D3

 Contains the instruction scheduling logic

 Scoreboard predicts register availability using static scheduling

 Hazard checking is done

 D4

 Final decode for control signals for integer execute load/store units



Cortex-A8 Memory System Effects on Instruction Timings



Cortex-A8 Dual-Issue Restrictions



+
Integer Execute Unit

 Consists of:

 Two symmetric arithmetic logic unit 

(ALU) pipelines

 An address generator for load and 

store instructions

 The multiply pipeline

 The instruction execute unit:

 Executes all integer ALU and multiply 

operations, including flag generation

 Generates the virtual addresses for 

loads and stores and the base write-

back value, when required

 Supplies formatted data for stores and 

forwards data and flags

 Processes branches and other changes 

of instruction stream and evaluates 

instruction condition codes

 For ALU instructions, either pipeline 

can be used, consisting of the 

following stages:

 E0 

 Access register file

 Up to six registers for two instructions

 E1

 Barrel shifter if needed.

 E2 

 ALU function

 E3

 If needed, completes saturation arithmetic

 E4

 Change in control flow prioritized and 

processed

 E5

 Results written back to register file



+ 

Load/Store Pipeline

 Runs parallel to integer pipeline

 E1

 Memory address generated from base and index 

register

 E2

 Address applied to cache arrays

 E3

 Load -- data are returned and formatted

 Store -- data are formatted and ready to be 

written to cache

 E4

 Updates L2 cache, if required

 E5

 Results are written back into the register file



Cortex-A8 

Example Dual 

Issue Instruction 

Sequence for 

Integer Pipeline



ARM Cortex-A8 NEON & Floating-Point Pipeline


