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Superscalar

Overview

Term first coined in
1987

In most applications the
bulk of the operations

!l are on scalar quantities

Essence of the approach
is the ability to execute
instructions
independently and

concurrently in different
pipelines

Refers to a machine that
1s designed to improve
the performance of the

execution of scalar
instructions

Represents the next
step in the evolution of
high-performance
general-purpose
Processors

Concept can be further
exploited by allowing
instructions to be
executed in an order
different from the
program order
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Constraints

m Instruction level parallelism

m Refers to the degree to which the instructions of a program can be
executed in parallel

m A combination of compiler based optimization and hardware
techniques-can be used to maximize instruction level parallelism

= Limitations:
m True data dependency
m Procedural dependency
- m Resource conflicts
m Output dependency
m Antidependency
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Design Issues

Instruction-Level Parallelism |
and Machine Parallelism

m Instruction level parallelism
m Instructions in a sequence are independent
- m Execution can be overlapped |
m Governed by data and procedural dependency

m Machine Parallelism
m Ability to take advantage of instruction level parallelism

. mGoverned by number of parallel pipelines
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Instruction Issue Policy

m Instruction issue

- m Refers to the process of initiating instruction execution in the processor’s
functional units

m Instruction issue policy
m Refers to the protocol used to issue instructions

m Instruction issue occurs when instruction moves from the decode stage of the
pipeline to the first execute stage of the pipeline

m Three types of orderings are important:
m The order in which instructions are fetched
m The order in which instructions are executed

m The.order in which instructions update the contents of register and memory.
locations

m Superscalar instruction issue policies can be grouped into the following
categories: ' ' ; ;

m In-order issue with in-order completion
m In-order issue with out-of-order completion
m Out-of-order issue with out-of-order completion
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Register Renaming e j e j _

Output and antidependencies occur
because register contents may not reflect
the correct ordering from the program

May result in a pipeline stall

Registers allocated dynamically




Branch Prediction

m Any high-performance pipelined machine must address the
issue of dealing with branches

m Intel 80486 addressed the problem by fetching both the next
sequential instruction after a branch and speculatlvely fetchmg
the branch target instruction

m RISC machines:
m Delayed branch strategy was 'explored

m Processor always executes the single instruction that immediately
follows the branch

m Keeps the pipeline full while the processor fetches-a new instruction
stream

m Superscalar machines:
m Delayed branch strategy has less appeal
m Have returned to pre-RISC techniques of branch prediction
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Superscalar Implementation

m Key elements:

Instruction fetch strategies that simultaneously fetch multiple
instruction

Logic for determining true dependencies involving register
values, and mechanisms for communicating these values to where
they are needed during execution

Mechanisms for initiating, or issuing, multiple instructions in
parallel

Resources for parallel execution of multiple instructions,
including multiple pipelined functional units and memory
hierarchies capable of simultaneously servicing multiple memory
references

Mechanisms for committing the process state in correct order



Pentium 4 Block Diagram
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Pentium 4 Pipeline

|TC let IP| TC l:'etch Drive| Alloc Renlame

TC Mext IF = wace cache next instruction pointer  Rename = register renaming - RF = register file

TC Feich = irace cache feich Jue = micro-op queuing Ex = execute
Alloc = allocate Sch = micro-op scheduling Flgs = flags
; Disp = Dispatch Br Ck = branch check

Figure 16.9 Pentium 4 Pipeline
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13-stage integer pipeline
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Instruction Fetch Unit

. . m FO
m Predicts instruction stream : !
| | | = Address generation unit (AGU)
m Fetches instructions from the Ll generates a new virtual address
instruction cache ; - = Not counted as part of the 13-stage
pipeline

m Places the fetched instructions
into a buffer for consumption by m Fl

the decode pipeline
m The calculated address is used to

m Also includes the L1 instruction fetch instructions from the Ll
cache ; " instruction cache

m In parallel, the fetch address is used

m Speculative (there is no A
to access branch prediction arrays

guarantee that they are

executed) m F3
m Branch or exceptional ~ = Instruction data are placed in the
instruction in the code stream instruction queue

can cause a pipeline flush m If an instruction results in branch

prediction, new target address is

m Can fetch up to four instructions : ;
sent to the address generation unit

per cycle



Instruction Decode Unit

m Decodes and sequences all ARM and Thumb instructions

m Dual pipeline structure, pipe0 and pipel
m Two instructions can progress at a time
m PipeO0 contains the older instruction in program order
m If 1nstruct1on in pipe0 cannot issue, 1nstruct10n in pipel will not issue

m All issued instructions progress in order

m Results written back to register file at end of execution
pipeline

m Prevents WAR hazards

- m Keeps track of WAW hazards and recovery from flush conditions
straightforward

m Main concern of decode pipeline is prevention of RAW
hazards
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Instruction Processing Stages

m DO

m Thumb instructions decompressed and preliminary decode is
performed ; ; ;

m Dl
m Instruction decode‘is completed

m D2
m Writes instructions into and read instructions from pending/replay"
queue

m D3

m Contains the instruction scheduling logic
- m Scoreboard predicts register availability using static scheduling
m Hazard checking isdone ' '

m D4
m Final decode for control signals for integer execute load/store units



Cortex-A8 Memory System Effects on Instruction Timings

Replay Delay Description

event
Load data & cycles 1. A load instruction misses in the L1 data cache.
IMiss 2. A request is then made to the L2 data cache.

3. If a miss also occurs in the L2 data cache, then a second replay
occurs. The number of stall cycles depends on the external
sVsiem memaory timing. The minimum time required to receive
the critical word for an L2 cache miss is approximately 23
cycles, but can be much longer becanse of L3 memory latencies.

Data TLB 24 cvcles 1. A table walk because of a miss in the L1 TLB causes a 24-cycle
Imiss delay, assuming the translation table entries are found in the L2
cache.

L. If the translation table entries are not present in the L2 cache,
the number of stall cycles depends on the external system
Memaory fming.

store buffer | 8 cycles 1. A store instruction miss does not result in any stalls unless the
full plus latency store buffer is full.
to drain fill | 2. In the case of a full store buffer, the delay is at least eight
buffer cycles. The delay can be more if it takes longer to drain some
entries from the store buffer.
Unaligned & cycles 1. If a load instruction address is unaligned and the full access is
load or store not contained within a 128-bit boundary, there is a 8-cvcle
request penalty.

L. If a store instruction address is unaligned and the full access is
not contained within a 64-bit boundary, there is a 8-cycle
penalty.




Cortex-A8 Dual-Issue Restrictions

Restriction Drescription Example Cyele Restriction
Lype
Load/store | There 15 only one L3 LDE r5. |rh) |
MESOURee pipeline. Only one LS STE i, [r#] 2 Wl tor L unit
hiazard mstruction can be 1ssued per | MOY 9 rld 2 Dual 1s5ue possible
cycle. It can be mn papeline 0
or prpeline 1
bAultiply There 15 only one multiply ADD rl 2, r3 1
rEsGLICE pipeline, and it 15 only MUL rd, r5_ rf 2 Woat tor prpeline O
hazard avatlable in prpeline (. MUL 7 o, A Woatt tor multply unt
Branch There can be only one BXrl |
rEsOUee branch per cycle. It can be in | BECY Ox 1{0CH] 2 Watl tor branch
hazard pipeline O or mpeline 1. A ADD rl 2,13 2 Dl 1250 possible
branch 15 any nstruction that
changes the PC.
Drata cutput | Instructions with the same MOVECQ ], 2 |
hazard destination cannot be 1sswed | MOYNE ], o3 2 Walt because of output
in dependency
the same cvele. This can LDE r5. |rh| 2 Dual 1ssue possible
happen
with conditional code.
Drata Instructions cannod be issued | ADD el 2, r3 1
SCHITCE it their data 1s not avalable. ADD rd vl rfs 2 Woaut torrl
hiazard See the scheduling tables for | LDE 7. [ 4 Wat tao cyeles for rd
Source requirements and
stages results.
Multi-cycle | Multi-cycle instructions must | MOY ¢l r2 | Watl tor pipeling (0, fransfer r4
mmsiruchions | 1ssue in pipeline 0 and can LA 3, {rd-r7} 2 Transter r3, rb
only dual 1550e in their last LM {cyele 2) A Transter rf
Itermbiom. LIDA feyele 3] 4 Dual 1ssue possible on Llast
transter
ADD i, i, rli 4
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Integer Execute Unit

m Consists of:

Two symmetric arithmetic logic unit
(ALU) pipelines

An address generator for load and
store instructions

The multiply pipeline

m The instruction execute unit:

Executes all integer ALU and multiply
operations, including flag generation

Generates the virtual addresses for
loads and stores and the base write-
back value, when required

Supplies formatfed data for stores aﬁd
forwards data and flags

Processes branches and other changes
of instruction stream and evaluates
instruction condition codes

m For ALU instructions, either pipeline
can be used, consisting of the
following stages: ;

EO

m Access register file

m  Up to six registers for two instructions

El
m Barrel shifter if needed. |

E2
m  ALU function

E3

m If needed, completes saturation arithmetic

E4

m  Change in control flow prioritized and
processed

ES

m  Results written back to register file




Load/Store Pipeline

Runs parallel to integer pipeline -

El

E2

E3

E4

ES -

‘Memory address generated from base and index

register

Address applied to cache arrays-

Load -- data are returned and formatted

Store -- data are formatted and ready to be
written to cache

Updates L2 cache, if required

Results are written back into the register file




Cycle Program Instruction Timing Description
Counter

I OxOO000edn | BXrl4 Dual issue pipeline 0

I Ox00000eed | CMP ri #0 Dual issue in pipeling 1

2z Ox0o0000ees | MOV 13 #3 Dual issue pipeline 0

A Ox00000eec | MOY 0 #0 Dial issue in pipeline 1

3 OxD0DO0D0e STREC) r3 [r] _#0 Dial issue in pipeline O, r3 not needed
until E3

3 OxO0000efd | CMP 2 #4 Dual issue in pipeline |

4 Ox0O000efs | LDRLS pe[por? LSL #2] | Single issue pipeline 0, +1 cycle for load
to pe, no extra cycle for shift since LSL

3 Ox0D000fZe | MOY 1 #1 Dual issue with 2nd ireration of load in
pipeline 1

f (oo DOOOOE3 {pcy+a #f38 dual issue pipeline 0

f 0000038 | STE r,[rl #0] Dual issue pipeline 1

i Ox0000013c: | LDR peri3].# Single issue pipeline 0, +1 cycle for load
(o pc

& 0000001 Te | ADD r2 4 #0xc Dial issue with 2nd eration of load in
pipeling |

9 000000180 | LDE ) Jrb #4] Dual issue pipeline 0

G 0000001842 | MOW rl #0xa Dual issue pipeline 1

12 000000188 | LDE i o0 #0] Single issue pipeline 0: rd produced in
E3, required in E1. s0 +2 cycle stall

13 Ox0O00018c | STE ) [r4 #0] Single issue pipeline O due to LS
resource hazard, no exira delay for 0
singe produced in E3 and consumed in
E3

14 000000190 | LDE 0 [rd #0xc] Single issue pipeline O due to LS
resource hazard

13 000000194 | LDMFED r1 3! {rd-rfrid} | Load muliple: loads r4 in 15t cycle, r5
and rf in 2nd cycle. rl4 in 3rd cycle, 3
cvecles total

17 00000 198 {pcy+0xdag #l 40 dual 1=sue in pipelineg 1 with 3rd
cyvele of LDM

I8 O00000E40 | ADD ) 42 ARM Single issue in pipeline O

R Oo0O000E4: | ADD el ol ARM Single issue in pipeline O, no dual issue

due o hazard on 0 produced in EZ and
required in E2

Cortex-AS8

Example Dual
Issue Instruction

Sequence for

Integer Pipeline



ARM Cortex-A8 NEON & Floating-Point Pipeline
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