
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(7th Week)

Outline

3. Instruction sets

—Instruction Sets: Characteristics and Functions

—Instruction Sets: Addressing Modes and Formats

—Assembly Language and Related Topics

+

3.3 Assembly Language and Related

Topics

3.3 Outline

• Assembly Language Concepts

• Motivation for Assembly Language
Programming

• Assembly Language Elements

• Examples

• Types of Assemblers

• Assemblers

• Loading and Linking

Assembler

A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor, augmented by additional

types of statements that facilitate program writing and that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or programming language)

to machine language (object code). Some compilers output assembly language which is then con-

verted to machine language by a separate assembler. A compiler is distinguished from an assembler

by the fact that each input statement does not, in general, correspond to a single machine instruction

or fixed sequence of instructions. A compiler may support such features as automatic allocation

of variables, arbitrary arithmetic expressions, control structures such as FOR and WHILE loops,

variable scope, input/output operations, higher-order functions and portability of source code.

Executable Code

The machine code generated by a source code language processor such as an assembler or

compiler.

This is software in a form that can be run in the computer.

Instruction Set

The collection of all possible instructions for a particular computer; that is, the collection of

machine language instructions that a particular processor understands.

Linker

A utility program that combines one or more files containing object code from separately compiled

program modules into a single file containing loadable or executable code.

Loader

A program routine that copies an executable program into memory for execution.

Machine Language, or Machine Code

The binary representation of a computer program which is actually read and interpreted by the

computer. A program in machine code consists of a sequence of machine instructions (possibly

interspersed with data). Instructions are binary strings which may be either all the same size (e.g.,

one 32-bit word for many modern RISC microprocessors) or of different sizes.

Object Code

The machine language representation of programming source code. Object code is created by a

compiler or assembler and is then turned into executable code by the linker.

Key Terms

For This

Week

Programming the Statement n = i + j+ k
Address Contents Address Contents

 Opcode Operand
101 0010 0010 1100 1001 101 22C9
102 0001 0010 1100 1010 102 12CA
103 0001 0010 1100 1011 103 12CB
104 0011 0010 1100 1100 104 32CC

201 0000 0000 0000 0010 201 0002
202 0000 0000 0000 0011 202 0003
203 0000 0000 0000 0100 203 0004
204 0000 0000 0000 0000 204 0000

 (a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand

101 LDA 201 FORMUL LDA I
102 ADD 202 ADD J
103 ADD 203 ADD K
104 STA 204 STA N

201 DAT 0002 I DATA 2
202 DAT 0003 J DATA 3
203 DAT 0004 K DATA 4
204 DAT 0000 N DATA 0

 (c) Symbolic program (d) Assembly program

Figure 15.1 Programming the Statement n = i + j+ k

Motivation for Assembly Language

Programming

• Assembly language is a programming language that is one
step away from machine language

• Typically each assembly language instruction is translated into
one machine instruction by the assembler

• Assembly language is hardware dependent, with a different
assembly language for each type of processor

• Assembly language instructions can make reference to
specific registers in the processor, include all of the opcodes
of the processor, and reflect the bit length of the various
registers of the processor and operands of the machine
language

– Therefore, an assembly language programmer must understand the
computer’s architecture

Assembly Language Programming (1 of 2)

Disadvantages

• The disadvantages of using an assembly language

rather than an HLL include:
– Development time

– Reliability and security

– Debugging and verifying

– Maintainability

– Portability

– System code can use intrinsic functions instead of assembly

– Application code can use intrinsic functions or vector classes

instead of assembly

– Compilers have been improved a lot in recent years

Assembly Language Programming (2 of 2)

Advantages

• Advantages to the occasional use of assembly

language include:
– Debugging and verifying

– Making compilers

– Embedded systems

– Hardware drivers and system code

– Accessing instructions that are not accessible from high-level

language

– Self-modifying code

– Optimizing code for size

– Optimizing code for speed

– Function libraries

– Making function libraries compatible with multiple compilers and

operating systems

Assembly Language vs. Machine Language

• The terms assembly language and machine language are
sometimes, erroneously, used synonymously

• Machine language:
▪ Consists of instructions directly executable by the processor

▪ Each machine language instruction is a binary string containing an opcode,
operand references, and perhaps other bits related to execution, such as
flags

▪ For convenience, instead of writing an instruction as a bit string, it can be
written symbolically, with names for opcodes and registers

• Assembly language:
▪ Makes much greater use of symbolic names, including assigning names to

specific main memory locations and specific instruction locations

▪ Also includes statements that are not directly executable but serve as
instructions to the assembler that produces machine code from an assembly
language program

Assembly-Language Statement Structure

Figure 15.2 Assembly-Language Statement Structur e

label: mnemonic operand(s) ;comment

optional opcode name

or

directive name

or

macro name

zero or more optional

Statements (1 of 3)

Label

• If a label is present, the assembler defines the label as

equivalent to the address into which the first byte of the object

code generated for that instruction will be loaded

• The programmer may subsequently use the label as an

address or as data in another instruction’s address field

• The assembler replaces the label with the assigned value

when creating an object program

• Labels are most frequently used in branch instructions

• Reasons for using a label:
– Makes a program location easier to find and remember

– Can easily be moved to correct a program

– Programmer does not have to calculate relative or absolute memory

addresses, but just uses labels as needed

Statements (2 of 3)

Mnemonic

• The mnemonic is the name of the operation or function of the

assembly language statement

• In the case of a machine instruction, a mnemonic is the

symbolic name associated with a particular opcode

Statements (3 of 3)

Operands

• An assembly language statement includes zero or more

operands

• Each operand identifies an immediate value, a register value,

or a memory location

• Typically the assembly language provides conventions for

distinguishing among the three types of operand references,

as well as conventions for indicating addressing mode

Intel x86 Program Execution Registers

0

AXAH AL

BH BL

CH CL

DH DL

BX

CX

DX

EAX (000)

EBX (011)

ECX (001)

EDX (010)

16-bit 32-bit

ESI (110)

EDI (111)

EBP (101)

ESP (100)

31
Generall-Purpose Registers

Segment Registers
0

CS

DS

SS

ES

FS

GS

15

Figure 15.3 Intel x86 Program Execution Registers

Statements (1 of 2)

Comment

• All assembly languages allow the placement of comments in

the program

• A comment can either occur at the right-hand end of an

assembly statement or can occupy and entire test line

• The comment begins with a special character that signals to

the assembler that the rest of the line is a comment and is to

be ignored by the assembler

• Typically, assembly languages for the x86 architecture use a

semicolon (;) for the special character

Statements (2 of 2)

Pseudo-instructions

• Pseudo-instructions are statements which, though not real x86

machine instructions, are used in the instruction field anyway

because that’s the most convenient place to put them

• Pseudo-instructions are not directly translated into machine

language instructions

• Instead, directives are instructions to the assembler to perform

specified actions during the assembly process

• Examples include:
– Define constants

– Designate areas of memory for data storage

– Initialize areas of memory

– Place tables or other fixed data in memory

– Allow references to other programs

Assembly-Language Directives

(a) Letters for RESx and Dx Directives

Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

(b) Directives

Name Description Example

DB, DW,

DD, DQ,

DT

Initialize locations
L6 DD 1A92H

;doubleword at L6 initialized to 1A92H

RESB,

RESW,

RESD,

RESQ,

REST

Reserve uninitialized

locations

BUFFER RESB 64

;reserve 64 bytes starting at BUFFER

INCBIN
Include binary file in

output
INCBIN “file.dat” ; include this file

EQU
Define a symbol to a

given constant value

MSGLEN EQU 25

;the constant MSGLEN equals decimal 25

TIMES
Repeat instruction

multiple times

ZEROBUF TIMES 64 DB 0

;initialize 64-byte buffer to all zeros

Macro Definitions (1 of 2)

• A macro definition is similar to a subroutine in several ways
– A subroutine is a section of a program that is written once, and can be used

multiple times by calling the subroutine from any point in the program

– When a program is compiled or assembled, the subroutine is loaded only once

– A call to the subroutine transfers control to the subroutine and a return instruction
in the subroutine returns control to the point of the call

• Similarly, a macro definition is a section of code that the programmer
writes once, and then can use many times
– The main difference is that when the assembler encounters a macro call, it

replaces the macro call with the macro itself

– This process is call macro expansion

• Macros are handled by the assembler at assembly time

• Macros provide the same advantage as subroutines in terms of
modular programming, but without the runtime overhead of a
subroutine call and return
– The tradeoff is that the macro approach uses more space in the object code

Macro Definitions (2 of 2)

In NASM and many
other assemblers, a
distinction is made

between a single-line
macro and a multi-line

macro

In NASM, single-
line macros are

defined using the
%DEFINE
directive

Multiline macros
are defined using

the mnemonic
%MACRO

Directives

• A directive is a command embedded in

the assembly source code that is

recognized and acted upon by the

assembler

• NASM includes the following directives:

• BITS

– Specifies whether NASM should generate

code designed to run on a processor

operating in 16-bit mode, 32-bit mode, or 64-

bit mode

• DEFAULT

– Can change some assembler defaults, such

as whether to use relative or absolute

addressing

• SECTION or SEGMENT

– Changes that section of the output file the

source code will be assembled into

• EXTERN

– Used to declare a symbol which is not
defined anywhere in the module being
assembled, but is assumed to be defined in
some other module and needs to be
referred to by this one

• GLOBAL

– Is the other end of EXTERN: if one module
declares a symbol as EXTERN and refers to
it, then in order to prevent linker errors,
some other module must actually define the
symbol and declare it as GLOBAL

• COMMON

– Used to declare common variables

• CPU

– Restricts assembly to those instructions that

are available on the specified CPU

• FLOAT

– Allows the programmer to change some of

the default settings to options other than

those used in IEEE 754

• [WARNING]

– Used to enable or disable classes of

warnings

System Calls

• The assembler makes use of the x86 INT instruction to make

system calls

• There are six registers that store the arguments of the system call

used

• EBX

• ECX

• EDX

• ESI

• EDI

• EDP

• These registers take the consecutive arguments, starting with the

EBX register

• If there are more than six arguments, then the memory location of

the first argument is stored in the EBX register

Assembly Programs for Greatest Common

Divisor

gcd: mov ebx,eax

 mov eax,edx

 test ebx,ebx

 jne L1

 test edx,edx

 jne L1

 mov eax,1

 ret

 L1: test eax,eax

 jne L2

 mov eax,ebx

 ret

 L2: test ebx,ebx

 je L5

 L3; cmp ebx,eax

 je L5

 jae L4

 sub eax,ebx

 jmp L3

 L4: sub ebx,eax

 jmp L3

 L5: ret

gcd: neg eax

 je L3

 L1: neg eax

 xchg eax,edx

 L2: sub eax,edx

 jg L2

 jne L1

 L3: add eax,edx

 jne L4

 inc eax

 L4: ret

(a) Compiled program (b) Written directly in assembly language

Figure 15.4 Assembly Programs for Greatest Common Divisor

C Program for Generating Prime Numbers

unsigned guess; /* current guess for prime */

unsigned factor ; /* possible factor of guess */

unsigned limit ; /* find primes up to this value */

printf (”Find primes up to : ”);

scanf(”%u”, &limit);

printf (”2\n”); /* treat first two primes as */

printf (”3\n”); /* special case */

guess = 5; /* initial guess */

while (guess <= limit) { /* look for a factor of guess */

 factor = 3;

 while (factor * factor < guess && guess % factor != 0)

 factor += 2;

 if (guess % factor != 0)

 printf (”%d\n”, guess);

 guess += 2; /* only look at odd numbers */

}

Figure 15.5 C Program for Generating Prime Numbers

Assembly

Program for

Generating

Prime

Numbers

%include "asm_io.inc"

segment .data

Message db "Find primes up to: ", 0

segment .bss

Limit resd 1 ; find primes up to this limit

Guess resd 1 ; the current guess for prime

segment .text

 global _asm_main

_asm_main:

 enter 0,0 ; setup routine

 pusha

 mov eax, Message

 call print_string

 call read_int ; scanf("%u", & limit);

 mov [Limit], eax

 mov eax, 2 ; printf("2\n");

 call print_int

 call print_nl

 mov eax, 3 ; printf("3\n");

 call print_int

 call print_nl

 mov dword [Guess], 5 ; Guess = 5;

while_limit: ; while (Guess <= Limit)

 mov eax,[Guess]

 cmp eax, [Limit]

 jnbe end_while_limit ; use jnbe since numbers are unsigned

 mov ebx, 3 ; ebx is factor = 3;

while_factor:

 mov eax,ebx

 mul eax ; edx:eax = eax*eax

 jo end_while_factor ; if answer won’t fit in eax alone

 cmp eax, [Guess]

 jnb end_while_factor ; if !(factor*factor < guess)

 mov eax,[Guess]

 mov edx,0

 div ebx ; edx = edx:eax % ebx

 cmp edx, 0

 je end_while_factor ; if !(guess % factor != 0)

 add ebx,2 ; factor += 2;

 jmp while_factor

end_while_factor:

 je end_if ; if !(guess % factor != 0)

 mov eax,[Guess] ; printf("%u\n")

 call print_int

 call print_nl

end_if:

 add dword [Guess], 2 ; guess += 2

 jmp while_limit

end_while_limit:

 popa

 mov eax, 0 ; return back to C

 leave

 ret

Figure 15.6 Assembly Program for Generating Prime Numbers

x86 String Instructions

Operation Name Description

MOVSB
Moves the string byte addressed by the ESI register to the location

addressed by the EDI register.

CMPSB
Subtracts the destination string byte from the source string element and

updates the status flags in the EFLAGS register according to the results.

SCASB
Subtracts the destination string byte from the contents of the AL register

and updates the status flags according to the results.

LODSB
Loads the source string byte identified by the ESI register into the EAX

register.

STOSSB
Stores the source string byte from the AL register into the memory

location identified with the EDI register.

REP Repeat while the ECX register is not zero.

REPE/REPZ Repeat while the ECX register is not zero and the ZF flag is set.

REPNE/REPNZ Repeat while the ECX register is not zero and the ZF flag is clear.

Assembly Program for Moving a String

section .text
 global main ;must be declared for using gcc
main: ;tell linker entry point
 mov ecx, len
 mov esi, s1
 mov edi, s2
 cld
 rep movsb
 mov edx,20 ;message length
 mov ecx,s2 ;message to write
 mov ebx,1 ;file descriptor (stdout)
 mov eax,4 ;system call number (sys_write)
 int 0x80 ;call kernel
 mov eax,1 ;system call number (sys_exit)
 int 0x80 ;call kernel
section .data
s1 db 'Hello, world!',0 ;string 1

len equ $-s1

section .bss

s2 resb 20 ;destination

Figure 15.7 Assembly Program for Moving a String

TYPES OF ASSEMBLERS

• An assembler is a software that translates assembly language into

machine language

• Although all assemblers perform the same tasks, their

implementations vary

• Some of the common terms that describe types of assemblers:

– Cross-assembler

– Resident assembler

– Macroassembler

– Microassembler

– Meta-assembler

– One-pass assembler

– Two-pass assembler

Flowchart of Two-Pass Assembler

Translating an ARM Assembly Instruction

into a Binary Machine Instruction

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1ADDS r3, r3, #19

data processing

immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

always

condition

code

update

condition

flags

zero

rotation

Figure 15.9 Translating an ARM Assembly Instruction into a Binary Machine Instruction

instr
format S Rn Rd rotate immediatecond opcode

One-Pass Assembler

• It is possible to implement as assembler that makes only a single pass
through the source code

• The main difficulty in trying to assemble a program in one pass involves
forward references to labels

• Instruction operands may be symbols that have not yet been defined in the
source program

– Therefore, the assembler does not know with relative address to insert in the
translated instruction

• When the assembler encounters an instruction operand that is a symbol that
is not yet defined, the assembler does the following:

– It leaves the instruction operand field empty in the assembled binary instruction

– The symbol used as an operand is entered in the symbol table and the table entry
is flagged to indicate that the symbol is undefined

– The address of the operand field in the instruction that refers to the undefined
symbol is added to a list of forward references associated with the symbol table
entry

The Loading Function

Process Control Block

Program

Data

Stack

Figure 15.10 The Loading Function

Process image in

main memory

Program

Data

Object Code

A Linking and Loading Scenario

Main memory

Figure 15.11 A Linking and Loading Scenario

Loader

Run-time

linker/

loader

x

Load

Module
Linker

Module 2

Module 1

Module n

Static

library
Dynamic

library

Dynamic

library

Addressing Requirements for a Process

Process Control Block

Program

Data

Stack

Current top

of stack

Entry point

to program

Process control

information

Increasing

address

values

Branch

instruction

Reference

to data

Figure 15.12 Addressing Requirements for a Process

Address Binding
(a) Loader

Binding Time Function

Programming time
All actual physical addresses are directly specified by the programmer in the

program itself.

Compile or assembly

time

The program contains symbolic address references, and these are converted to

actual physical addresses by the compiler or assembler.

Load time
The compiler or assembler produces relative addresses. The loader translates

these to absolute addresses at the time of program loading.

Run time
The loaded program retains relative addresses. These are converted dynami-

cally to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time

No external program or data references are allowed. The programmer

must place into the program the source code for all subprograms that are

referenced.

Compile or assembly time
The assembler must fetch the source code of every subroutine that is refer-

enced and assemble them as a unit.

Load module creation

All object modules have been assembled using relative addresses. These mod-

ules are linked together, and all references are restated relative to the origin

of the final load module.

Load time

External references are not resolved until the load module is to be loaded into

main memory. At that time, referenced dynamic link modules are appended

to the load module, and the entire package is loaded into main or virtual

memory.

Run time

External references are not resolved until the external call is executed by the

processor. At that time, the process is interrupted and the desired module is

linked to the calling program.

Absolute and Relocatable Load Modules

Symbolic

Addresses

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

Figure 15.13 Absolute and Relocatable Load Modules

Absolute

Addresses

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

Relative

Addresses

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

x

Main memory

addresses

JUMP 400

400 + x

1200 + x

PROGRAM

DATA

(d) Relative load module

loaded into main memory

starting at location x

LOAD 1200

The Linking Function

Figure 15.14 The Linking Function

0

Relative

Addresses

JSR "L"

Return

Return

Return

L – 1

L

L + M – 1

L + M

L + M + N – 1

Module A

Module B

(b) Load module

JSR "L + M"

Module C

CALL B;
External

Reference to

Module B
Length L

Return

Module A

(a) Object modules

CALL C;

Length M

Module B

Return

Length N

Return

Module C

Load-Time Dynamic Linking

• Dynamic Linking is used to refer to the practice of deferring

the linkage of some external modules until after the load

module has been created

• For load-time dynamic linking the steps occur following:
– The load module to be loaded is read into memory

– Any reference to an external module causes the loader to find the target module, load

it, and alter the reference to a relative address in memory from the beginning of the

application module

• Advantages to approach over what might be called static

linking
– It becomes easier to incorporate changed or upgraded versions of the target module

– Having target code in a dynamic link file paves the way for automatic code sharing

– It becomes easier for independent software developers to extend the functionality of a

widely-used operating system such as Linux

• With run-time dynamic linking some of the linking is postponed until

execution time

▪ External references to target modules remain in the loaded program

▪ When a call is made to the absent module, the operating system locates the

module, loads it, and links it to the calling module

▪ Such modules are typically shareable

▪ In the Windows environment these are called dynamic-link libraries (DLLs)

▪ If one process is already making use of a dynamically linked shared module, then

that module is in main memory and a new process can simply link to the already-

loaded module

• The use of DLLs can lead to a problem commonly referred to as DLL

hell

▪ DLL hell occurs if two or more processes are sharing a DLL module, but expect

different versions of the module

Run-Time Dynamic Linking

