(Advanced) Computer Architechture

Prof. Dr. Hasan Hiuiseyin BALIK
(6t Week)




Outline

3. Instruction sets
—Instruction Sets: Characteristics and Functions
—Instruction Sets: Addressing Modes and Formats
—Assembly Language and Related Topics




3.2 Instruction Sets: Addressing
Modes and Formats




3.2 Outline

e Addressing Modes

e Xx86 and ARM Addressing Modes
e Instruction Formats

e X86 and ARM Instruction Formats




Addressing Modes




Addressing Modes

Instruction Instruction Instruction
[ I Operand | L] A | L] A |
Memory — Memory
Operand |«
»{ Operand >
(a) Immediate (b) Direct (c) Indirect
Instruction Instruction Instruction
I [R | I [R | L IR A |
Memory Memory
L Operand L L
- - »| Operand - Operand
Registers Registers Registers
(d) Register (e) Register Indirect (f) Displacement
Instruction
I |
Implici . . . .
i A = contents of an address field in the instruction
L»I:T — R = contents of an address field in the instruction that refers to a
op of Stac .
Reqgister I‘eg |Ster
(g) Stack




Basic Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA=A Simple Limited address space
Indirect EA = (A) Large address space Multiple memory references
Register EA=R No memory reference Limited address space
Register indirect EA =(R) Large address space Extra memory reference
Displacement EA=A+(R) Flexibility Complexity
Stack EA = top of stack No memory reference Limited applicability

A = contents of an address field in the instruction

R = contents of an address field in the instruction that refers to a register
EA = actual (effective) address of the location containing the referenced operand
(X) = contents of memory location X or register X -




Immediate Addressing

« Simplest form of addressing
* Operand = A

* This mode can be used to define and use constants or
set Initial values of variables

— Typically the number will be stored in twos complement form
— The leftmost bit of the operand field is used as a sign bit

- Advantage:

— No memory reference other than the instruction fetch is required to obtain the
operand, thus saving one memory or cache cycle in the instruction cycle

- Disadvantage:

— The size of the number is restricted to the size of the address field, which, in
most instruction sets, is small compared with the word length




Direct Addressing

Address field
contains the
effective address of
the operand

Effective address
(EA) = address

field (A)

Was common in
earlier generations
of computers

Requires only one

memory reference
and no special
calculation

Limitation is that it
provides only a
limited address




Indirect Addressing

« Reference to the address of a word in memory which contains a
full-length address of the operand

- EA=(A)

— Parentheses are to be interpreted as meaning contents of

« Advantage:
— For a word length of N an address space of 2Nis now available

- Disadvantage:
— Instruction execution requires two memory references to fetch the operand
One to get its address and a second to get its value

= Ararely used variant of indirect addressing is multilevel or cascaded indirect
addressing
- EA=(...(A)...)
— Disadvantage is that three or more memory references could be required to fetch
an operand




Register Addressing

Address field
refers to a
register rather
than a main
memory address

Advantages: Disadvantage:

* Only a small * The address space
address field is is very limited
needed in the
instruction

* No time-consuming
memory references
are required




Register Indirect Addressing

* Analogous to indirect addressing

— The only difference is whether the address field refers to a memory
location or a register

- EA=(R)

« Address space limitation of the address field is overcome
by having that field refer to a word-length location
containing an address

« Uses one less memory reference than indirect
addressing




Displacement Addressing

- Combines the capabilities of direct addressing and register
Indirect addressing

- EA=A+(R)

- Requires that the instruction have two address fields, at least
one of which is explicit
— The value contained in one address field (value = A) is used directly

— The other address field refers to a register whose contents are added to
A to produce the effective address

* Most common uses:
— Relative addressing
— Base-register addressing
— Indexing




Relative Addressing

* The next instruction address is added to the address field to produce the EA

« Typically the address field is treated as a twos complement number for this
operation

» Thus the effective address is a displacement relative to the address of the
instruction




Base-Register Addressing

« The referenced register contains a main memory address and
the address field contains a displacement from that address

* The register reference may be explicit or implicit
« Exploits the locality of memory references
« Convenient means of implementing segmentation

* In some implementations a single segment base register is
employed and is used implicitly

* In others the programmer may choose a register to hold the
base address of a segment and the instruction must reference
It explicitly




Indexing

- The address field references a main memory address and the referenced
register contains a positive displacement from that address

«  The method of calculating the EA is the same as for base-register addressing

* An important use is to provide an efficient mechanism for performing iterative
operations

« Autoindexing
— Automatically increment or decrement the index register after each reference to it
- EA=A+(R)
- R=(R+1

« Postindexing
— Indexing is performed after the indirection
- EA=(A)+(R)

* Preindexing
— Indexing is performed before the indirection
- EA=(A+(R))




Stack Addressing

A stack is a linear array of locations
— Sometimes referred to as a pushdown list or last-in-first-out queue

A stack is a reserved block of locations
— Items are appended to the top of the stack so that the block is partially filled

Associated with the stack is a pointer whose value is the address of the top of
the stack

— The stack pointer is maintained in a register
— Thus references to stack locations in memory are in fact register indirect

addresses
Is a form of implied addressing

The machine instructions need not include a memory
reference but implicitly operate on the top of the stack




x86 Addressing Mode Calculation

Segment Registers

Base Register

SS
GS .
FS Index Register
Selector
—» CS %
Scale
1,2,4,0r 8
+ (!)igplacemgnt. N\~ Segment
in instruction; Base
0, 8, or 32 bits) Address
Effective
Descriptor Registers Address
A caca DiateSS] Linear
R o1 GY Address
A Diclt FSI + >
B E
— A Q
A qpoce DicneD =
— A ccess RightsCS E
U Limit
__|Base Address
>

Tevevey
CiSTANBUL




x86 Addressing Modes

Mode Algorithm
Immediate Operand = A

Register Operand LA=R

Displacement LA=(SR) + A

Base LA =(SR) + (B)

Base with Displacement LA=(SR)+(B) + A
Scaled Index with Displacement LA=(SR)+ () xS+ A
Base with Index and Displacement LA=(SR)+(B)+ () +A
Base with Scaled Index and Displacement LA=(SR)+ () xS+ (B)+A
Relative LA=(PC)+A

LA = linear address R = register

(X) = contents of X B = base register

SR = segment register | = index register

PC = program counter S = scaling factor

A = contents of an address field in the instruction




ARM Indexing Methods

Offset

0xC 0x20C
A

STRB r0, [rl, #12]

ri

Original
base register FOX2OO 0x200

(a) Offset
STRB r0, [rl, #12]!
Updated rl Offset
base register 0x20C
A
ri

Original
base register FOXZOO 0x200

(b) Preindex

STRB r0, [rl], #12

ri
Updated Offset
baseregister | 0x20C 0xC 0x20C

A

ri
Original
base register 0x200 » 0x200

(c) Pogtindex

0x5

0x5

0x5

ro
0x5

ro
0x5

ro
0x5

Destination
register
for STR

Destination
register
for STR

Destination
register
for STR

CEL L X2

-
ISTAMBUL

L]




ARM Data Processing Instruction Addressing
and Branch Instructions

- Data processing instructions

— Use either register addressing or a mixture of register and
Immediate addressing

— For register addressing the value in one of the register operands
may be scaled using one of the five shift operators

 Branch instructions

— The only form of addressing for branch instructions is immediate
— Instruction contains 24 bit value
Shifted 2 bits left so that the address is on a word boundary
Effective range £ 32MB from from the program counter




ARM Load/Store Multiple Addressing

LDMxx r10, {rO, rl, r4d}
STMxx rl1l0, {r0, rl, r4d}

| ncrement | ncrement Decrement Decrement
r10 after (1A) before (1B) after (DA) before (DB)
Baseregiser | 0x20C (rd) 0x218
(rd) (rl) 0x214
(rl) (r0) 0x210
(r0) (rd) 0x20C
(rl) (r4) | 0x208
(r0) (rl) | 0x204
(r0) 0x200




Instruction Formats

operand




Instruction Length

« Most basic design issue

- Affects, and is affected by:
— Memory size
— Memory organization
— Bus structure
— Processor complexity
— Processor speed

« Should be equal to the memory-transfer length or one should be a
multiple of the other

- Should be a multiple of the character length, which is usually 8 bits,
and of the length of fixed-point numbers




Allocation of Bits

i |l || II|I |I|| IMemory




PDP-8 Instruction Formats

Memory Reference | ngructions

| Opcode | DI | zIC | Displacement |
0 2 3 4 5 11
I nput/Output | nstructions
| 1 1 0 | Device | Opcode |
0 2 3 8 9 11

Register Reference I ndructions
Group 1 Microinstructions

| 1 1 1 0 [CLA|CLL [CMA|CML | RAR | RAL | BSW | IAC |
0 1 2 3 4 5 6 7 8 9 10 11

Group 2 Microinstructions

| 1 1 1 1 | CLA|SMA | SZA | SNL | RSS | OSR | HLT | 0 |
0 1 2 3 4 5 6 7 8 9 10 11

Group 3 Microinstructions

| 1 1 1 1 |[CLA[MQA| 0 |[MQL| 0 | 0 | 0 [ 1 |
0 1 2 3 4 5 6 7 8 9 10 11

D/l = Direct/Indirect address IAC = Increment ACcumulator

Z/C = Page 0 or Current page SMA = Skip on Minus Accumulator

CLA = Clear Accumulator SZA = Skip on Zero Accumulator

CLL = Clear Link SNL = Skip on Nonzero Link

CMA = CoMplement Accumulator RSS = Reverse Skip Sense

CML = CoMplement Link OSR = Or with Switch Register

RAR = Rotate Accumultator Right HLT = HalLT

RAL = Rotate Accumulator Left MQA = Multiplier Quotient into Accumulator

BSW = Byte SWap MQL = Multiplier Quotient Load i EA S




PDP-10 Instruction Format

. Index
Opcode Register I Register Memory Address

0 8 9 12 14 17 18 35

I = indirect bit




Variable-Length Instructions

» Variations can be provided efficiently and compactly
* Increases the complexity of the processor

* Does not remove the desirability of making all of the
Instruction lengths integrally related to word length

— Because the processor does not know the length of the next
Instruction to be fetched a typical strategy is to fetch a number of
bytes or words equal to at least the longest possible instruction

— Sometimes multiple instructions are fetched




Instruction Formats for the PDP-11

1|Opcodel Source |Dedtination| 2| Opcode R Source 3 Opcode Offet
4 6 6 7 3 6 8 8
4 Opcode FP| Degtination| 5 Opcode Dedtination| 6 Opcode CcC
8 2 6 10 6 12 4
7 Opcode R 8 Opcode
13 3 16
9|Opcode[ Source |[Destination Memory Address
4 6 6 16
10 Opcode R Source Memory Address
7 3 6 16
1 Opcode FP| Source Memory Address
8 2 6 16
12 Opcode Degtination Memory Address
10 6 16
13 |Opcode| Source [Destination Memory Address 1 Memory Address 2
4 6 6 16 16

Number s below fieldsindicate bit length

Sour ce and Destination each contain a 3-bit addr essing mode field and a 3-bit r egister number

FP indicates one of four floating-point registers

R indicates one of the general-purpose r egisters T

-
ISTAMNBUL

CC isthe condition code field




Example of VAX Instructions

Hexadecimal Explanation Assembler Notation
Format and Description
8 Dbits |
0 5 Opcode for RSB RSB
Return from subroutine
D 4 Opcode for CLRL CLRLR9
5 o Register R9 Clear register R9
B 0 Opcode for MOVW MOVW 356(R4), 25(R11)
Cl| 4 Word displacement mode, Move a word from address
6 2 Register R4 that is 356 plus contents
356 in hexadecimal of R4 to address that is
0 1 25 plus contents of R11
Byte displacement mode,
A B Register R11
1 9 25 in hexadecimal
C 1 Opcode for ADDL3 ADDL3 #5, RO, @A[R2]
0 5 Short literal 5 Add 5 to a 32-bit integer in
5 0 Register mode RO RO and store the result in
g location whose address is
4 2 Index prefix R2 sum of A and 4 times the
D = Indirect word relative contents of R2
(displacement from PC)
Amount of displacement from
PC relative to location A

A T
ISTAMNBUL




X86 Instruction Format

Oor1l Oor1l Oor1l Oor1l
bytes bytes bytes bytes

Ingtruction| Segment Ope_rand Ad(_:lre$

. ) sze Sze
prefix override i )
override | override
7 Oori Oor1

0,1,2,3,or4bytes ; 1,2, 0r 3bytes  bytes bytes 0,1, 2, or 4 bytes 0,1, 2, or 4 bytes

| nstruction prefixes Opcode ModR/m SIB Displacement | mmediate
[\ ~.~~
l“ ~~~~
1 “ "~~~
: \Y ~~~~~
b \‘ ~~~~
1 Y ~~~~

Mod Reg/Opcode R/M Scale I ndex Base

TeYVvee
CiSTANBUL




ARM Instruction Formats

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

?r:tisdr(i;iissz% cond |0 O 0| opcode (S Rn Rd shift amount | shift| 0 Rm
dat?e;;ri?f;s:mg cond [0 O Of opcode |S Rn Rd Rs 0 [ shift] 1 Rm
data Fr;?;izsi:lg cond |0 O 1| opcode (S Rn Rd rotate immediate
immed';is/szfzz cond (0 1 OfP[U[B[W|L Rn Rd immediate
regilstae?/;;fc;: cond |0 1 1|P|U|B[W|L Rn Rd shift amount| shift| 0 Rm
lofﬂﬁg: cond 1 0 O|P[U|IS|W|L Rn register list
branc%ﬁmﬁi cond 10 1L 24-bit offset

S = For data processing instructions, signifies that B = Distinguishes between an unsigned

the instruction updates the condition codes byte (B==1) and a word (B==0) access
S = For load/store multiple instructions, signifies L= For load/store instructions, distinguishes
whether instruction execution is restricted to between a Load (L==1) and a Store (L==0)
supervisor mode L = For branch instructions, determines whether
P, U, W = bits that distinguish among areturn address is stored in the link register

different types of addressing_mode

TTvYS Ve,
CiSTANBUL




Examples of Use of ARM Immediate
Constants

313029 28 27 26 252423 222120191817 161514131211109 8 7 6 5 4 3 2 1 0
0o|j0|0|0O|OfO|O|O|OfO|O|O|O|OfO|O|O|O|O|OfO|O]OfO

ror #—0 range 0 through 0x000000FF —step 0x00000001

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0(0|0|0|0O|0O|0O|O|O|O|O|O|O|O|O|O(OfO|O(OfOfOfO|O

ror #8 —range 0 through OxFF000000 —step 0x01000000

313029 28 27 26 25 24 23 222120191817 16151413121110 9 8 7 6 5 4 3 2 1 O
olfojojojojofofofojojojojofofofofojojojojojfo 00

ror #30—range 0 through 0x000003FC —step 0x00000004




Expanding a Thumb ADD Instruction into
Its ARM Equivalent

1514131211109 8 7 6 5 4 3 2 10

0 01 nge Rd/Rn immediate

add/subract/compare/move
immediate format

apD r3, #19 |0 0O 1|1 0|0 1 1|0 0O O 1T 0 O 1 1

M minor opcode

major et denoting ADD —

denoting format 3 instruction 0

move/compare/add/sub destlnatlog and

with immediate value source register immediate

value
update

always condition zero.
condition code Y flags \ 4 4 rotation L/

ADDS r3, r3, #1911 1 1 0|0 O 1{0O O 1 Of1/0O O 1 1|0 O 1 1/0 OO OO OO 1T0O0T11

data processing
immediate format

cond |0 O 1| opcode |S Rn Rd rotate immediate

313029 28 27 26 25 24 23 22212019181716151413121110 9 8 7 6 5 4 3 2 1 O




Thumb-2 Instruction Set

« The only instruction set available on the Cortex-M microcontroller
products

* Is a major enhancement to the Thumb instruction set architecture
(ISA)

— Introduces 32-bit instructions that can be intermixed freely with the older 16-bit
Thumb instructions

— Most 32-bit Thumb instructions are unconditional, whereas almost all ARM
Instructions can be conditional

— Introduces a new If-Then (IT) instruction that delivers much of the functionality of
the condition field in ARM instructions

« Delivers overall code density comparable with Thumb, together with
the performance levels associated with the ARM ISA

- Before Thumb-2 developers had to choose between Thumb for size
and ARM for performance




Thumb-2 Encoding

i +2 i+4 i+6 +8 i+10 Instruction flow
thm hwi || hw2 thm hwi || hw2 thm #
Halfword 1 [15:13] | Halfword1 [12:11] Length Functionality

Not 111

XX

16 bits (1 halfword)

16-bit Thumb instruction

111

00

16 bits (1 halfword)

16-bit Thumb unconditional
branch instruction

111

Not 00

32 bits (2 halfwords)

32-bit Thumb-2 instruction




