
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(5th Week)

Outline

3. Instruction sets

—Instruction Sets: Characteristics and Functions

—Instruction Sets: Addressing Modes and Formats

—Assembly Language and Related Topics

+

3.1 Instruction Sets: Characteristics

and Functions

3.1 Outline

• Machine Instruction Characteristics

• Types of Operands

• Intel x86 and ARM Data Types

• Types of Operations

• Intel x86 and ARM Operation Types

Machine Instruction Characteristics

• The operation of the processor is determined by the

instructions it executes, referred to as machine

instructions or computer instructions

• The collection of different instructions that the processor

can execute is referred to as the processor’s instruction

set

• Each instruction must contain the information required by

the processor for execution

Instruction Cycle State Diagram

Instruction

address

calculation

Instruction

operation

decoding

Operand

address

calculation

Data

Operation

Operand

address

calculation

Instruction

fetch

Instruction complete,

fetch next instruction

Multiple

operands

Return for string

or vector data

Figure 13.1 Instruction Cycle State Diagram

Operand

fetch

Operand

store

Multiple

results

Machine Instruction Elements:

• Operation code (opcode) : Specifies the operation to be performed

• Source operand reference : operands that are inputs for the operation

• Result operand reference: The operation may produce a result

• Next instruction reference: This tells the processor where to fetch the next instruction

Source and result operands can be in one of

four areas:

1) Main or virtual memory

– As with next instruction

references, the main or virtual

memory address must be

supplied

2) I/O device

– The instruction must specify

the I/O module and device for

the operation. If memory-

mapped I/O is used, this is

just another main or virtual

memory address

3) Processor register

– A processor contains one or

more registers that may be

referenced by machine

instructions.

– If more than one register

exists each register is

assigned a unique name or

number and the instruction

must contain the number of

the desired register

4) Immediate

– The value of the operand is

contained in a field in the

instruction being executed

A Simple Instruction Format

• Within the computer each instruction is represented by a

sequence of bits

• The instruction is divided into fields, corresponding to the

constituent elements of the instruction

Opcode

4 bits 6 bits 6 bits

16 bits

Figure 13.2 A Simple Instruction Format

Operand Reference Operand Reference

Instruction Representation

• Opcodes are represented by abbreviations
called mnemonics

• Examples include:

– ADD Add

– SUB Subtract

– MUL Multiply

– DIV Divide

– LOAD Load data from memory

– STOR Store data to memory

• Operands are also represented symbolically (ADD R, Y: may mean add
the value contained in data location Y to the contents of register R)

• Each symbolic opcode has a fixed binary representation

– The programmer specifies the location of each symbolic operand

Instruction Types

• I/O instructions are needed
to transfer programs and
data into memory and the
results of computations
back out to the user

•Test instructions are used to test the
value of a data word or the status of a
computation

•Branch instructions are used to branch
to a different set of instructions
depending on the decision made

•Movement of data into or
out of register and or
memory locations

•Arithmetic instructions provide
computational capabilities for
processing numeric data

•Logic (Boolean) instructions operate
on the bits of a word as bits rather
than as numbers, thus they provide
capabilities for processing any
other type of data the user may wish
to employ

Data
processing

Data
storage

Data
movement

Control

Programs to Execute Y =
𝐀 – 𝐁

𝐂 + (𝐃𝐄)

Instruction Comment

SUB Y, A, B Y ¬ A – B

MPY T, D, E T ¬ D ´ E

ADD T, T, C T ¬ T + C

DIV Y, Y, T Y ¬ Y ÷ T

(a) Three-address instructions

Instruction Comment

LOAD D AC ¬ D

MPY E AC ¬ AC ´ E

ADD C AC ¬ AC + C

STOR Y Y ¬ AC

LOAD A AC ¬ A

SUB B AC ¬ AC – B

DIV Y AC ¬ AC ÷ Y

STOR Y Y ¬ AC

Instruction Comment

MOVE Y, A Y ¬ A

SUB Y, B Y ¬ Y – B

MOVE T, D T ¬ D

MPY T, E T ¬ T ´ E

ADD T, C T ¬ T + C

DIV Y, T Y ¬ Y ÷ T

(b) Two-address instructions

(c) One-address instructions

Figure 12.3 Programs to Execute

Y=
A- B

C+ D´ E()

Utilization of Instruction Addresses

(Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A ← B OP C

2 OP A, B A ← A OP B

1 OP A AC ← AC OP A

0 OP T ← (T – 1) OP T

AC = accumulator

T = top of stack

(T – 1) = second element of stack

A, B, C = memory or register locations

Instruction Set Design

Fundamental design issues:

Operation repertoire

• How many and which
operations to provide and
how complex operations
should be

Data types

• The various types of data
upon which operations are
performed

Instruction format

• Instruction length in bits,
number of addresses, size
of various fields, etc.

Registers

• Number of processor
registers that can be
referenced by instructions
and their use

Addressing

• The mode or modes by
which the address of an
operand is specified

Programmer’s means of controlling the processor

Defines many of the functions performed by the processor

Very complex because it affects so many aspects of the computer system

Machine instructions operate on

Numbers

• All machine languages include numeric data types

• Numbers stored in a computer are limited:
– Limit to the magnitude of numbers representable on a machine

– In the case of floating-point numbers, a limit to their precision

• Three types of numerical data are common in computers:
– Binary integer or binary fixed point

– Binary floating point

– Decimal

• Packed decimal
– Each decimal digit is represented by a 4-bit code with two digits stored per

byte

– To form numbers 4-bit codes are strung together, usually in multiples of 8 bits

Characters

• A common form of data is text or character strings

• Textual data in character form cannot be easily stored or

transmitted by data processing and communications systems

because they are designed for binary data

• Most commonly used character code is the International

Reference Alphabet (IRA)

– Referred to in the United States as the American Standard Code

for Information Interchange (ASCII)

• Another code used to encode characters is the Extended

Binary Coded Decimal Interchange Code (EBCDIC)

– EBCDIC is used on IBM mainframes

Logical Data

• An n-bit unit consisting of n 1-bit items of data, each item

having the value 0 or 1

• Two advantages to bit-oriented view:

– Memory can be used most efficiently for storing an array of

Boolean or binary data items in which each item can take on only

the values 1 (true) and 0 (false)

– To manipulate the bits of a data item

▪ If floating-point operations are implemented in software, we need to

be able to shift significant bits in some operations

▪ To convert from IRA to packed decimal, we need to extract the

rightmost 4 bits of each byte

x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and double

quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using twos

complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded

decimal (BCD)

A representation of a BCD digit in the range 0 through 9, with one digit in

each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset within a

segment. Used for all pointers in a nonsegmented memory and for references

within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset of 16,

32, or 64 bits. Far pointers are used for memory references in a segmented

memory model where the identity of a segment being accessed must be

specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is considered

as an independent unit. A bit string can begin at any bit position of any byte

and can contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to 223 – 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from

zero to 223 – 1 bytes.

Packed SIMD (single

instruction, multiple data)

Packed 64-bit and 128-bit data types.

x86 Numeric Data Formats

sign bit

sign bit

sign bit

integer bit

exponent significand

exp significand

exp significand

twos comp

sign bit

sign bit

sign bit

Figure 13.4 x86 Numeric Data Formats

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signed integer

(twos complement)

Word signed integer

(twos complement)

Doubleword signed integer

(twos complement)

Quadward usigned integer

(twos complement)t

Single precision

floating point

Double precision

floating point

Double extended precision

floating point

07

7

015

15

031

31

31 22

063

63

63

6379

0

0

sign bit
Half precision

floating point
15 0

0

0

0

051

0

sign bit

9

exp signif.

Single-Instruction-Multiple-Data (SIMD)

Data Types

• Introduced to the x86 architecture as part of the extensions
of the instruction set to optimize performance of multimedia
applications

• These extensions include MMX (multimedia extensions)
and SSE (streaming SIMD extensions)

• The basic concept is that multiple operands are packed
into a single referenced memory item and that these
multiple operands are operated on in parallel

• Data types:
– Packed byte and packed byte integer
– Packed word and packed word integer
– Packed doubleword and packed doubleword integer
– Packed quadword and packed quadword integer
– Packed single-precision floating-point and packed double-

precision floating-point

ARM Data Types
ARM processors support
data types of:

•8 (byte)

•16 (halfword)

•32 (word) bits in length

Alignment checking

•When the appropriate control
bit is set, a data abort signal
indicates an alignment fault for
attempting unaligned access

Unaligned access

•When this option is enabled,
the processor uses one or
more memory accesses to
generate the required transfer
of adjacent bytes transparently
to the programmer

For all three data types
an unsigned

interpretation is
supported in which the

value represents an
unsigned, nonnegative

integer

All three data types can
also be used for twos
complement signed

integers

ARM Endian Support—Word Load/Store

with E-Bit

Byte 3

Data bytes

in memory

(ascending address values

from byte 0 to byte 3)

ARM register

program status register E-bit = 0

Figure 13.5 ARM Endian Support - Word Load/Store with E-bit

program status register E-bit = 1

ARM register

Byte 2

Byte 1

Byte 0

031 031

Byte 1Byte 2Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Byte 0

Common x86

Instruction

Set

Operations

(1 of 3)

Operation Name Description

MOV Dest, Source
Move data between registers or between register and memory or immediate to

register.

XCHG Op1, Op2 Swap contents between two registers or register and memory.

PUSH Source
Decrements stack pointer (ESP register), then copies the source operand

to the top of stack.

POP Dest Copies top of stack to destination and increments ESP.

(a) Data Transfer

Operation Name Description

ADD Dest, Source

Adds the destination and the source operand and stores the result in the

destination. Destination can be register or memory. Source can be register,

memory, or immediate.

SUB Dest, Source Subtracts the source from the destination and stores the result in the destination.

MUL Op
Unsigned integer multiplication of the operand by the AL, AX, or EAX register and

stores in the register. Opcode indicates size of register.

IMUL Op Signed integer multiplication.

DIV Op

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers

(dividend) by the source operand (divisor) and stores the result in the AX

(AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers.

IDIV Op Signed integer division.

INC Op Adds 1 to the destination operand, while preserving the state of the CF flag.

DEC Op
Subtracts 1 from the destination operand, while preserving the state of the CF

flag.

NEG Op
Replaces the value of operand with (0 – operand), using twos complement

representation.

CMP Op1, Op2
Compares the two operands by subtracting the second operand from the first

operand and sets the status flags in the EFLAGS register according to the results.

(b) Arithmetic

Common x86

Instruction

Set

Operations

(2 of 3)

Operation Name Description

SAL Op, Quantity
Shifts the source operand left by from 1 to 31 bit positions. Empty bit positions are

cleared. The CF flag is loaded with the last bit shifted out of the operand.

SAR Op, Quantity

Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions

are cleared if the operand is positive and set if the operand is negative. The CF

flag is loaded with the last bit shifted out of the operand.

SHR Op, Quantity
Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions

are cleared and the CF flag is loaded with the last bit shifted out of the operand.

ROL Op, Quantity
Rotate bits to the left, with wraparound. The CF flag is loaded with the last bit

shifted out of the operand.

ROR Op, Quantity
Rotate bits to the right, with wraparound. The CF flag is loaded with the last bit

shifted out of the operand.

RCL Op, Quantity
Rotate bits to the left, including the CF flag, with wraparound. This instruction

treats the CF flag as a one-bit extension on the upper end of the operand.

RCR Op, Quantity
Rotate bits to the right, including the CF flag, with wraparound. This instruction

treats the CF flag as a one-bit extension on the lower end of the operand.

(c) Shift and Rotate

Operation Name Description

NOT Op Inverts each bit of the operand.

AND Dest, Source
Performs a bitwise AND operation on the destination and source operands and

stores the result in the destination operand.

OR Dest, Source
Performs a bitwise OR operation on the destination and source operands and

stores the result in the destination operand.

XOR Dest, Source
Performs a bitwise XOR operation on the destination and source operands and

stores the result in the destination operand.

TEST Op1, Op2
Performs a bitwise AND operation on the two operands and sets the S, Z, and P

status flags. The operands are unchanged.

(d) Logical

Common x86

Instruction

Set

Operations

(3 of 3)

Operation Name Description

CALL proc

Saves procedure linking information on the stack and branches to the called procedure

specified using the operand. The operand specifies the address of the first instruction in

the called procedure.

RET
Transfers program control to a return address located on the top of the stack. The

return is made to the instruction that follows the CALL instruction.

JMP Dest
Transfers program control to a different point in the instruction stream without recording

return information. The operand specifies the address of the instruction being jumped to.

Jcc Dest

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,

SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to the

target instruction specified by the destination operand. See Tables 13.8 and 13.9.

NOP

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up

space in the instruction stream but does not impact machine context, except for the EIP

register.

HLT

Stops instruction execution and places the processor in a HALT state. An enabled

interrupt, a debug exception, the BINIT# signal, the INIT# signal, or the RESET#

signal will resume execution.

WAIT
Causes the processor to repeatedly check for and handle pending, unmasked, floating-

point exceptions before proceeding.

INT Nr Interrupts current program, runs specified interrupt program

Operation Name Description

IN Dest, Source
Copies the data from the I/O port specified by the source operand to the

destination operand, which is a register location.

INS Dest, Source
Copies the data from the I/O port specified by the source operand to the

destination operand, which is a memory location.

OUT Dest, Source
Copies the byte, word, or doubleword value from the source register to the I/O

port specified by the destination operand.

XOR Dest, Source
Copies byte, word, or doubleword from the source operand to the I/O port

specified with the destination operand. The source operand is a memory location.

(f) Input/Output

(e) Transfer of Control

Processor Actions for Various Types of

Operations

Data transfer

Transfer data from one location to another

If memory is involved:

Determine memory address

Perform virtual-to-actual-memory address transformation

Check cache

Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion
Similar to arithmetic and logical. May involve special logic to

perform conversion

Transfer of

control

Update program counter. For subroutine call/return, manage

parameter passing and linkage

I/O
Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

Data Transfer

Most fundamental type of
machine instruction

Must specify:

• Location of the source and
destination operands

• The length of data to be
transferred must be indicated

• The mode of addressing for each
operand must be specified

Examples of IBM EAS/390 Data Transfer

Operations
Operation

Mnemonic Name

Number of Bits

Transferred Description

L Load 32 Transfer from memory to register

LH Load Halfword 16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load (short) 32
Transfer from floating-point register to

floating-point register

LE Load (short) 32
Transfer from memory to floating-point

register

LDR Load (long) 64
Transfer from floating-point register to floating-point

register

LD Load (long) 64 Transfer from memory to floating-point register

ST Store 32 Transfer from register to memory

STH Store Halfword 16 Transfer from register to memory

STC Store Character 8 Transfer from register to memory

STE Store (short) 32
Transfer from floating-point register

to memory

STD Store (long) 64
Transfer from floating-point register

to memory

Arithmetic

• Most machines provide the basic arithmetic operations of
add, subtract, multiply, and divide

• These are provided for signed integer (fixed-point) numbers

• Often they are also provided for floating-point and packed
decimal numbers

• Other possible operations include a variety of single-operand
instructions:

– Absolute

▪ Take the absolute value of the operand

– Negate

▪ Negate the operand

– Increment

▪ Add 1 to the operand

– Decrement

▪ Subtract 1 from the operand

Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q P = Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1

Shift and Rotate Operations

(a) Logical right shift

0

0

(e) Right rotate

(c) Arithmetic right shift

S

(b) Logical left shift

(f) Left rotate

0

(d) Arithmetic left shift

S

Figure 13.6 Shift and Rotate Operations

Input Operation Result

10100110
Logical right shift (3

bits)
00010100

10100110
Logical left shift (3

bits)
00110000

10100110
Arithmetic right shift

(3 bits)
11110100

10100110
Arithmetic left shift (3

bits)
10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101

Instructions that
change the
format or

operate on the
format of data

An example
is converting

from
decimal to

binary

An example of a
more complex

editing
instruction is the

EAS/390
Translate (TR)

instruction

Conversion

Input/Output

• Variety of approaches taken:

– Isolated programmed I/O

– Memory-mapped programmed I/O

– DMA

– Use of an I/O processor

• Many implementations provide only a few I/O instructions, with

the specific actions specified by parameters, codes, or

command words

System Control

Instructions that can be executed only while the processor is in a
certain privileged state or is executing a program in a special
privileged area of memory

Typically these instructions are reserved for the use of the
operating system

Examples of system control operations:

A system control instruction
may read or alter a control

register

An instruction to read or
modify a storage protection

key

Access to process control
blocks in a

multiprogramming system

Transfer of Control

• Reasons why transfer-of-control operations are required:

– It is essential to be able to execute each instruction more than once

– Virtually all programs involve some decision making

– It helps if there are mechanisms for breaking the task up into smaller

pieces that can be worked on one at a time

• Most common transfer-of-control operations found in

instruction sets:

– Branch

– Skip

– Procedure call

Branch Instructions

Figure 13.7 Branch Instructions

Memory

address

200

201

202

203

SUB X, Y

BRZ 211

BR 202

BRE R1, R2, 235

210

211

225

235

Unconditional

branch Conditional

branch

Conditional

branch

Instruction

BRE R1, R2, X : Branch to X if contents of R1 = contents of R2.

BRZ X : Branch to location X if result is zero.

Skip Instructions

Includes an implied
address

Typically implies that one
instruction be skipped,

thus the implied address
equals the address of the
next instruction plus one

instruction length

Because the skip
instruction does not
require a destination

address field it is free to
do other things

Example is the increment-
and-skip-if-zero (ISZ)

instruction

Procedure Call Instructions

• Self-contained computer program that is incorporated into a

larger program

– At any point in the program the procedure may be invoked, or called

– Processor is instructed to go and execute the entire procedure and then

return to the point from which the call took place

• Two principal reasons for use of procedures:

– Economy

▪ A procedure allows the same piece of code to be used many times

– Modularity

• Involves two basic instructions:

– A call instruction that branches from the present location to the procedure

– Return instruction that returns from the procedure to the place from which it

was called

Nested Procedures

CALL Proc1

Main Memory

Main

Program

Procedure

Proc1

Procedure

Proc2

Addresses

4000

4100
4101

4500

4800

4600
4601

4650
4651

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns (b) Execution sequence

Figure 13.8 Nested Procedures

Use of Stack to Implement Nested

Subroutines of Nested Procedures

Figure 13.9 Use of Stack to Implement Nested Procedures of Figure 13.8

(a) Initial stack

contents

4101

(b) After

CALL Proc1

4101

4601

(c) Initial

CALL Proc2

4101

(d) After

RETURN

4101

4651

(e) After

CALL Proc2

4101

(f) After

RETURN

(g) After

RETURN

x86 Operation Types

• The x86 provides a complex array of operation types including a number of
specialized instructions

• The intent was to provide tools for the compiler writer to produce optimized
machine language translation of high-level language programs

• Provides four instructions to support procedure call/return:

– CALL

– ENTER

– LEAVE

– RETURN

• When a new procedure is called the following must be performed upon entry
to the new procedure:

– Push the return point on the stack

– Push the current frame pointer on the stack

– Copy the stack pointer as the new value of the frame pointer

– Adjust the stack pointer to allocate a frame

x86 Status Flags

Status Bit Name Description

C Carry

Indicates carrying or borrowing out of the left-

most bit position following an arithmetic operation. Also

modified by some of the shift and rotate operations.

P Parity

Parity of the least-significant byte of the result of an arithmetic

or logic operation. 1 indicates even parity; 0 indicates odd

parity.

A Auxiliary Carry

Represents carrying or borrowing between half-

bytes of an 8-bit arithmetic or logic operation. Used in binary-

coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign
Indicates the sign of the result of an arithmetic or logic

operation.

O Overflow
Indicates an arithmetic overflow after an addition or

subtraction for twos complement arithmetic.

x86 Condition

Codes for

Conditional

Jump and SETcc

Instructions

Symbol Condition Tested Comment

A, NBE C = 0 AND Z = 0 Above; Not below or equal (greater than, unsigned)

AE, NB, NC C = 0 Above or equal; Not below (greater than or equal,

unsigned); Not carry

B, NAE, C C = 1 Below; Not above or equal (less than, unsigned);

Carry set

BE, NA C = 1 OR Z = 1 Below or equal; Not above (less than or equal, unsigned)

E, Z Z = 1 Equal; Zero (signed or unsigned)

G, NLE [(S = 1 AND O = 1) OR (S = 0

AND O = 0)]AND[Z = 0]

Greater than; Not less than or equal (signed)

GE, NL (S = 1 AND O = 1) OR (S = 0

AND O = 0)

Greater than or equal; Not less than (signed)

L, NGE (S = 1 AND O = 0) OR (S = 0

AND O = 0)

Less than; Not greater than or equal (signed)

LE, NG (S = 1 AND O = 0) OR (S = 0

AND O = 1) OR (Z = 1)

Less than or equal; Not greater than (signed)

NE, NZ Z = 0 Not equal; Not zero (signed or unsigned)

NO O = 0 No overflow

NS S = 0 Not sign (not negative)

NP, PO P = 0 Not parity; Parity odd

O O = 1 Overflow

P P = 1 Parity; Parity even

S S = 1 Sign (negative)

x86 Single-Instruction, Multiple-Data

(SIMD) Instructions

• 1996 Intel introduced MMX technology into its Pentium

product line

– MMX is a set of highly optimized instructions for multimedia tasks

• Video and audio data are typically composed of large arrays of

small data types

• Three new data types are defined in MMX

– Packed byte

– Packed word

– Packed doubleword

• Each data type is 64 bits in length and consists of multiple

smaller data fields, each of which holds a fixed-point integer

MMX

Instruction

Set

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword (Q)], the data

types are indicated in brackets.

Category Instruction Description

Arithmetic

PADD [B, W, D] Parallel add of packed eight bytes, four 16-bit words, or two

32-bit doublewords, with wraparound.

PADDS [B, W] Add with saturation.

PADDUS [B, W] Add unsigned with saturation.

PSUB [B, W, D] Subtract with wraparound.

PSUBS [B, W] Subtract with saturation.

PSUBUS [B, W] Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with high-

order 16 bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-order 16 bits of 32-bit result

chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together

adjacent pairs of 32-bit results.

Comparison
PCMPEQ [B, W, D] Parallel compare for equality; result is mask of 1s if true or 0s if false.

PCMPGT [B, W, D] Parallel compare for greater than; result is mask of 1s if true or 0s if false.

Conversion

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with signed saturation.

PUNPCKH [BW, WD, DQ] Parallel unpack (interleaved merge) high-

order bytes, words, or doublewords from MMX register.

PUNPCKL [BW, WD, DQ] Parallel unpack (interleaved merge) low-

order bytes, words, or doublewords from MMX register.

Logical

PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift

PSLL [W, D, Q] Parallel logical left shift of packed words, doublewords, or quadword by amount

specified in MMX register or immediate value.

PSRL [W, D, Q] Parallel logical right shift of packed words, doublewords, or quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, doublewords, or quadword.

Data transfer MOV [D, Q] Move doubleword or quadword to/from MMX register.

Statemgt EMMS Empty MMX state (empty FP registers tag bits).

ARM Operation Types

Load and store
instructions

Branch
instructions

Data-processing
instructions

Multiply
instructions

Parallel addition
and subtraction

instructions

Extend
instructions

Status register
access

instructions

ARM Conditions

for Conditional

Instruction

Execution

Code Symbol Condition Tested Comment

0000 EQ Z = 1 Equal

0001 NE Z = 0 Not equal

0010 CS/HS C = 1 Carry set/unsigned higher or same

0011 CC/LO C = 0 Carry clear/unsigned lower

00100 MI N = 1 Minus/negative

00101 PL N = 0 Plus/positive or zero

00110 VS V = 1 Overflow

00111 VC V = 0 No overflow

1000 HI C = 1 AND Z = 0 Unsigned higher

1001 LS C = 0 OR Z = 1 Unsigned lower or same

1010 GE N = V

[(N = 1 AND V = 1)

OR (N = 0 AND V = 0)]

Signed greater than or equal

1011 LT N ≠ V

[(N = 1 AND V = 0)

OR (N = 0 AND V = 1)]

Signed less than

1100 GT (Z = 0) AND (N = V) Signed greater than

1101 LE (Z = 1) OR (N ≠ V) Signed less than or equal

1110 AL – Always (unconditional)

1111 – – This instruction can only be executed

unconditionally

