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6.1 Outline

• The Arithmetic and Logic Unit

• Integer Representation

• Integer Arithmetic

• Floating-Point Representation

• Floating-Point Arithmetic



Arithmetic & Logic Unit (ALU)

• Part of the computer that actually performs arithmetic 

and logical operations on data

• All of the other elements of the computer system are 

there mainly to bring data into the ALU for it to process 

and then to take the results back out

• Based on the use of simple digital logic devices that can 

store binary digits and perform simple Boolean logic 

operations



ALU Inputs and Outputs

ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 11.1  ALU Inputs and Outputs



Integer Representation

• In the binary number system arbitrary numbers can be 

represented with: 

– The digits zero and one

– The minus sign (for negative numbers)

– The period, or radix point (for numbers with a fractional component)

• For purposes of computer storage and processing we do not 

have the benefit of special symbols for the minus sign and 

radix point

• Only binary digits (0,1) may be used to represent numbers



Sign-Magnitude Representation

There are several alternative 
conventions used to represent 

negative as well as positive 
integers

Sign-magnitude representation is 
the simplest form that employs a 

sign bit

Drawbacks:

Because of these drawbacks, 
sign-magnitude representation is 
rarely used in implementing the 

integer portion of the ALU

•All of these alternatives involve treating the 
most significant (leftmost) bit in the word as a 
sign bit

•If the sign bit is 0 the number is positive

•If the sign bit is 1 the number is negative

•Addition and subtraction require a 
consideration of both the signs of the 
numbers and their relative magnitudes to 
carry out the required operation

•There are two representations of 0



Characteristics of Twos Complement 

Representation and Arithmetic

Range -2n-1 through 2n-1 - 1

Number of Representations

of Zero
One

Negation

Take the Boolean complement of each bit of the corresponding

positive number, then add 1 to the resulting bit pattern viewed

as an unsigned integer.

Expansion of Bit Length
Add additional bit positions to the left and fill in with the value

of the original sign bit.

Overflow Rule

If two numbers with the same sign (both positive or both nega-

tive) are added, then overflow occurs if and only if the result has

the opposite sign.

Subtraction Rule
To subtract B from A, take the twos complement of B and add

it to A.



Alternative Representations for 4-Bit Integers
Decimal

Representation

Sign-Magnitude

Representation

Twos Complement

Representation

Biased

Representation

+8 – – 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

–0 0000 0000 0111

+0 1000 – –

–1 1001 1111 0110

–2 1010 1110 0101

–3 1011 1101 0100

–4 1100 1100 0011

–5 1101 1011 0010

–6 1110 1010 0001

–7 1111 1001 0000

–8 – 1000 –



Use of a Value Box for Conversion between 

Twos Complement Binary and Decimal

 

–128 64 32 16 8 4 2 1 

        

 

(a) An eight-position two's complement value box 

 

 

 

–128 64 32 16 8 4 2 1  

1 0 0 0 0 0 1 1  

–128      +2 +1 = –125 

 

(b) Convert binary 10000011 to decimal 

 

 

 

 –128 64 32 16 8 4 2 1  

 1 0 0 0 1 0 0 0  

–120 = –128    +8     

 

(c) Convert decimal –120 to binary 

 

 

Figure 11.2  Use of a Value Box for Conversion 

Between Twos Complement Binary and Decimal 



Range Extension

• Range of numbers that can be expressed is extended by increasing 

the bit length

• In sign-magnitude notation this is accomplished by moving the sign 

bit to the new leftmost position and fill in with zeros

• This procedure will not work for twos complement negative integers

– Rule is to move the sign bit to the new leftmost position and fill in with 

copies of the sign bit

– For positive numbers, fill in with zeros, and for negative numbers, fill in 

with ones

– This is called sign extension



Fixed-Point Representation

The radix point (binary 
point) is fixed and assumed 

to be to the right of the 
rightmost digit

Programmer can use the 
same representation for 

binary fractions by scaling 
the numbers so that the 
binary point is implicitly 
positioned at some other 

location



Negation

• Twos complement operation

– Take the Boolean complement of each bit of the integer (including 

the sign bit)

– Treating the result as an unsigned binary integer, add 1

• The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)

bitwise complement = 11101101

+              1

11101110 = -18

-18 =  11101110 (twos complement)

bitwise complement =  00010001

+               1

00010010 = +18



Negation Special Case 1

0     =       00000000    (twos complement)

Bitwise complement  =       11111111

Add 1 to LSB                  +                1

Result          100000000

Overflow is ignored, so:

- 0 = 0 



Negation Special Case 2

-128     =        10000000    (twos complement)

Bitwise complement   =         01111111

Add 1 to LSB                       +              1

Result            10000000

So:

-(-128) = -128   X

Monitor MSB (sign bit)

It should change during negation



Addition of Numbers in Twos Complement

Representation
 

    1001 = –7 

   +0101 =  5 

    1110 = –2 

    1100 = –4 

   +0100 =  4 

   10000 =  0 

(a) (–7) + (+5) (b) (–4) + (+4) 

 

    0011 = 3 

   +0100 = 4 

    0111 = 7 

 

    1100 = –4 

   +1111 = –1 

   11011 = –5 

(c) (+3) + (+4) (d) (–4) + (–1) 

 

    0101 = 5 

   +0100 = 4 

    1001 = Overflow 

 

    1001 = –7 

   +1010 = –6 

   10011 = Overflow 

(e) (+5) + (+4) (f) (–7) + (–6) 

 

Figure 11.3  Addition of Numbers in Twos Complement Representation 



If two numbers are added, and they are 

both positive or both negative, then 

overflow occurs if and only if the result 

has the opposite sign.

Overflow Rule



To subtract one number (subtrahend) 

from another (minuend), take the twos 

complement (negation) of the 

subtrahend and add it to the minuend.

Subtraction Rule



Subtraction of Numbers in Twos Complement

Representation (M − S)
 

        0010 =  2 

       +1001 = –7 

        1011 = –5 

 

        0101 =  5 

       +1110 = –2 

       10011 =  3 

 

(a) M = 2 = 0010 

    S = 7 = 0111 

   –S =     1001 

 

(b) M = 5 = 0101 

    S = 2 = 0010 

   –S =     1110 

 

 

        1011 = –5 

       +1110 = –2 

       11001 = –7 

 

 

        0101 = 5 

       +0010 = 2 

        0111 = 7 

(c) M =–5 = 1011 

    S = 2 = 0010 

   –S =     1110 

 

(d) M = 5 = 0101 

    S =–2 = 1110 

   –S =     0010 

 

 

        0111 = 7 

       +0111 = 7 

        1110 = Overflow 

 

 

        1010 = –6 

       +1100 = –4 

       10110 = Overflow 

(e) M =  7 = 0111 

    S = –7 = 1001 

   –S =      0111 

 

(f) M = –6 = 1010 

    S =  4 = 0100 

   –S =      1100 

 

 

Figure 11.4  Subtraction of Numbers in Twos Complement Representation (M – S) 

 

 



Geometric Depiction of Twos Complement 

Integers
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Figure 11.5  Geometric Depiction of Twos Complement Integers

(b) n-bit numbers
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Block Diagram of Hardware for Addition 

and Subtraction

AdderOF

OF = overflow bit

SW = Switch (select addition or subtraction)

Complementer

Figure 11.6   Block Diagram of Hardware for Addition and Subtraction

A RegisterB Register

SW



Multiplication of Unsigned Binary Integers

Figure 11.7  Multiplication of Unsigned Binary Integers

    1011

    1101

    1011

   0000

  1011

 1011

10001111

Multiplicand (11)

Multiplier (13)

Product (143)

Partial products



Hardware Implementation of Unsigned 

Binary Multiplication

Mn-1

Multiplicand

(a) Block Diagram

(b) Example from Figure 9.7 (product in A, Q)

Figure 11.8  Hardware Implementation of

Unsigned Binary Multiplication
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Flowchart for Unsigned Binary 

Multiplication
START

END
YesNo

No Yes

C, A     0

M     Multiplicand

Q     Multiplier

Count     n

Shift right C, A, Q

Count     Count – 1

C, A     A + M

Q0 = 1?

Count = 0? Product

in A, Q

Figure 11.9  Flowchart for Unsigned Binary Multiplication



Multiplication of Two Unsigned 4-Bit 

Integers Yielding an 8-Bit Result
 

     1011 

    ´1101 

 00001011 1011 ´ 1 ´ 20 

 00000000 1011 ´ 0 ´ 21 

 00101100 1011 ´ 1 ´ 22 

 01011000 1011 ´ 1 ´ 23 

 10001111 

 

Figure 11.10  Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit 

Result 
 



Comparison of Multiplication of Unsigned 

and Twos Complement Integers

 

 

 

    1001 (9) 

   ´0011 (3) 

00001001 1001 ´ 20
 

00010010 1001 ´ 21
 

00011011 (27) 

 

    1001 (–7) 

   ´0011 (3) 

11111001 (–7) ´ 20
 = (–7) 

11110010 (–7) ´ 21
 = (–14) 

11101011 (–21) 

(a) Unsigned integers (b) Twos complement integers 

 

 

Figure 11.11  Comparison of Multiplication of Unsigned and Twos 

Complement Integers 



Booth’s Algorithm for Twos Complement 

Multiplication START

END
YesNo

= 10 = 01

= 11

= 00

A    0, Q-1    0

M    Multiplicand

Q    Multiplier

Count    n

Arithmetic Shift

Right: A, Q, Q-1
Count    Count – 1

A    A + MA    A – M

Q0 , Q-1

Count = 0?

Figure 11.12  Booth's Algorithm for Twos Complement Multiplication



Example of Booth’s Algorithm (7 × 3)

Figure 11.13  Example of Booth's Algorithm (7    3)
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Examples Using Booth’s Algorithm
 

 

    0111 

   ´0011 (0) 

11111001 1–0 

0000000  1–1 

000111   0–1  

00010101 (21)  

 

    0111 

   ´1101 (0) 

11111001 1–0 

0000111  0–1 

111001   1–0  

11101011 (–21)  

(a) (7) ´ (3) = (21) (b) (7) ´ (–3) = (–21) 

 

    1001 

   ´0011 (0) 

00000111 1–0 

0000000  1–1 

111001   0–1  

11101011 (–21)  

 

    1001 

   ´1101 (0) 

00000111 1–0 

1111001  0–1 

000111   1–0  

00010101 (21)  

(c) (–7) ´ (3) = (–21) (d) (–7) ´ (–3) = (21) 

 

 

Figure 11.14  Examples Using Booth's Algorithm 



Example of Division of Unsigned Binary 

Integers

Figure 11.15  Example of Division of Unsigned Binary Integers

     00001101

1011 10010011

      1011

     001110

       1011

       001111

         1011

          100

Quotient

DividendDivisor

Remainder

Partial

remainders



Flowchart for Unsigned Binary Division
START

END
YesNo

No Yes

Quotient in Q

Remainder in A

A     0

M     Divisor

Q     Dividend

Count     n

Shift Left

A, Q

A     A – M

Count     Count – 1

Q0     1
Q0     0

A     A + M

A < 0?

Count = 0?

Figure 11.16  Flowchart for Unsigned Binary Division



Example of Restoring Twos Complement 

Division (7/3)
 

A Q  
0000 

 

0111 Initial value 

0000 

1101 

1101 

0000 

1110 

 

 

1110 

Shift 

Use twos complement of 0011 for subtraction 

Subtract 

Restore, set Q
0
 = 0 

0001 

1101 

1110 

0001 

1100 

 

 

1100 

Shift 

 

Subtract 

Restore, set Q
0
 = 0 

0011 

1101 

0000 

1000 

 

1001 

Shift 

 

Subtract, set Q
0
 = 1 

0001 

1101 

1110 

0001 

0010 

 

 

0010 

Shift 

 

Subtract 

Restore, set Q
0
 = 0 

 

Figure 11.17  Example of Restoring Twos Complement Division (7/3) 



Floating-Point Representation

Principles
• With a fixed-point notation it is possible to represent a range of 

positive and negative integers centered on or near 0

• By assuming a fixed binary or radix point, this format allows the 

representation of numbers with a fractional component as well

• Limitations:

– Very large numbers cannot be represented nor can very small 

fractions

– The fractional part of the quotient in a division of two large 

numbers could be lost



Typical 32-Bit Floating-Point Format

8 bits

sign of

significand

significand

23 bits

(a) Format

(b) Examples

Figure 11.18   Typical 32-Bit Floating-Point Format

 1.1010001    210100  = 0 10010011 10100010000000000000000 =  1.6328125    220 

-1.1010001    210100  = 1 10010011 10100010000000000000000 = –1.6328125    220

 1.1010001    2-10100 = 0 01101011 10100010000000000000000 =  1.6328125    2–20

-1.1010001    2-10100 = 1 01101011 10100010000000000000000 = –1.6328125    2–20

biased exponent



• The final portion of the word

• Any floating-point number can be expressed in many ways

• Normal number

– The most significant digit of the significand is nonzero

The following are equivalent, where the significand is 

expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26

Floating-Point

Significand



Expressible Numbers in Typical 32-Bit 

Formats
Expressible Integers

Expressible Negative

Numbers

Negative

Overflow

Positive

Overflow

Negative

Underflow

Zero

Positive

Underflow

Expressible Positive

Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Figure 11.19  Expressible Numbers in Typical 32-Bit Formats
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Line

Number
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0

0

231 – 1

2–127

–231

–2–127– (2 – 2–23)    2128 (2 – 2–23)    2128



Density of Floating-Point Numbers

0

Figure 11.20    Density of Floating-Point Numbers

–n n 2n 4n



IEEE Standard 754

Most important floating-point 
representation is defined

Standard was developed to 
facilitate the portability of 

programs from one 
processor to another and to 
encourage the development 
of sophisticated, numerically 

oriented programs

Standard has been widely 
adopted and is used on 

virtually all contemporary 
processors and arithmetic 

coprocessors

IEEE 754-2008 covers both 
binary and decimal floating-

point representations



IEEE 754-2008

• Defines the following different types of floating-point formats:

• Arithmetic format
– All the mandatory operations defined by the standard are supported by the format.  The 

format may be used to represent floating-point operands or results for the operations 

described in the standard.

• Basic format
– This format covers five floating-point representations, three binary and two decimal, 

whose encodings are specified by the standard, and which can be used for arithmetic.  

At least one of the basic formats is implemented in any conforming implementation.

• Interchange format
– A fully specified, fixed-length binary encoding that allows data interchange between 

different platforms and that can be used for storage.



IEEE 754 Formats

trailing significand field

(c) binary128 format

Figure 11.21   IEEE 754 Formats
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(b) binary64 format

8 bits
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bit



IEEE 754 Format Parameters

Parameter
Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent –126 –1022 –16382

Approx normal number range

(base 10)
10-38, 10+38 10-308, 10+308 10-4932, 10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98  231 1.99  263 1.99  2128

Smallest positive normal number 2-126 2-1022 2-16362

Largest positive normal number 2128 - 2104 21024 - 2971 216384 - 216271

Smallest subnormal magnitude 2-149 2-1074 2-16494

Note: * not including implied bit and not including sign bit.



Additional Formats

Extended Precision Formats

• Provide additional bits in the exponent 

(extended range) and in the significand 

(extended precision)

• Lessens the chance of a final result that 

has been contaminated by excessive 

roundoff error

• Lessens the chance of an intermediate 

overflow aborting a computation whose 

final result would have been 

representable in a basic format

• Affords some of the benefits of a larger 

basic format without incurring the time 

penalty usually associated with higher 

precision

Extendable Precision Format

• Precision and range are defined 

under user control

• May be used for intermediate 

calculations but the standard 

places no constraint or format or 

length



IEEE Formats

Format
Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k}

(k = n  32 for n > 4)
X X

decimal64 X X X

decimal128 X X X

decimal{k}

(k = n  32 for n > 4)
X X

extended precision X

extendable precision X



Interpretation of IEEE 754 Floating-Point 

Numbers (1 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0  

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s   0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 0 < e < 225 f 2e-127(1.f)

negative normal nonzero 1 0 < e < 225 f –2e-127(1.f)

positive subnormal 0 0 f  0 2e-126(0.f)

negative subnormal 1 0 f  0 –2e-126(0.f)

(a) binary32 format



Interpretation of IEEE 754 Floating-Point 

Numbers (2 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0  

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s   0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 0 < e < 2047 f 2e-1023(1.f)

negative normal nonzero 1 0 < e < 2047 f –2e-1023(1.f)

positive subnormal 0 0 f  0 2e-1022(0.f)

negative subnormal 1 0 f  0 –2e-1022(0.f)

(b) binary64 format



Interpretation of IEEE 754 Floating-Point 

Numbers (3 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0  

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s   0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 all 1s f 2e-16383(1.f)

negative normal nonzero 1 all 1s f –2e-16383(1.f)

positive subnormal 0 0 f  0 2e-16383(0.f)

negative subnormal 1 0 f  0 –2e-16383(0.f)

(c) binary128 format



Floating-Point Numbers and Arithmetic 

Operations

Floating-Point Numbers Arithmetic Operations

X = XS  BXE

Y = YS  BYE

X + Y = (XS  BXE-YE + YS)  BYE

X – Y = (XS  BXE-YE – YS)  BYE

X  Y = (XSYS)  BXE+YE

XE   YE

X

Y

XS

YS
= BXE-YE(  ) 

Examples:

X = 0.3  102= 30

Y = 0.2   103= 200

X + Y = (0.3  102-3+ 0.2)  103= 0.23  103= 230

X – Y = (0.3  102-3– 0.2)  103= ( – 0.17)  103= –170

X  Y = (0.3  0.2)  102+3= 0.06  105= 6000

X   Y = (0.3  0.2)  102-3= 1.5  10-1= 0.15



Floating-Point Addition and Subtraction 

(Z   X   Y)

Figure 11.22  Floating-Point Addition and Subtraction (Z     X ±  Y)
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Floating-Point Multiplication (Z  X  Y)
MULTIPLY

RETURN

RETURN

Yes

No

Z      0

X = 0?

Figure 11.23  Floating-Point Multiplication (Z     X     Y)
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Floating-Point Division (Z  X/Y)
DIVIDE

RETURN

RETURN

Yes

No

Z      0

X = 0?

Figure 11.24  Floating-Point Division (Z     X/Y)
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The Use of Guard Bits

 

 

       x = 1.000.....00 ´ 21 

      –y = 0.111.....11 ´ 21 

       z = 0.000.....01 ´ 21 

         = 1.000.....00 ´ 2–22 

 

       x = .100000 ´ 161 

      –y = .0FFFFF ´ 161 

       z = .000001 ´ 161 

         = .100000 ´ 16–4 

(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits 

 

       x = 1.000.....00 0000 ´ 21 

      –y = 0.111.....11 1000 ´ 21 

       z = 0.000.....00 1000 ´ 21 

         = 1.000.....00 0000 ´ 2–23 

 

       x = .100000 00 ´ 161 

      –y = .0FFFFF F0 ´ 161 

       z = .000000 10 ´ 161 

         = .100000 00 ´ 16–5 

(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits 

 

 

Figure 11.25  The Use of Guard Bits 
 



Precision Considerations

• IEEE standard approaches:

– Round to nearest: 

▪ The result is rounded to the nearest representable 
number.

– Round toward +∞ :

▪ The result is rounded up toward plus infinity.

– Round toward -∞: 

▪ The result is rounded down toward negative infinity.

– Round toward 0: 

▪ The result is rounded toward zero.

Rounding



Interval Arithmetic

• Provides an efficient method for 

monitoring and controlling errors in 

floating-point computations by 

producing two values for each 

result

• The two values correspond to the 

lower and upper endpoints of an 

interval that contains the true result

• The width of the interval indicates 

the accuracy of the result

• If the endpoints are not 

representable then the interval 

endpoints are rounded down and 

up respectively

• If the range between the upper and 

lower bounds is sufficiently narrow

then a sufficiently accurate result 

has been obtained

• Minus infinity and rounding to plus 

are useful in implementing interval 

arithmetic

Truncation

• Round toward zero

• Extra bits are ignored

• Simplest technique

• A consistent bias toward zero in 

the operation

– Serious bias because it affects 

every operation for which there 

are nonzero extra bits



IEEE Standard for Binary Floating-Point Arithmetic

Infinity
Is treated as the limiting case of real arithmetic, with the infinity values 

given the following interpretation:

- ∞ < (every finite number) < + ∞

For example:

5 + (+ ∞ )  = + ∞ 5÷ (+ ∞ ) = +0

5 - (+ ∞ )   = - ∞  (+ ∞ ) + (+ ∞ ) = + ∞ 

5 + (- ∞ )   = - ∞  (- ∞ ) + (- ∞)       = - ∞

5 - (- ∞ )    = + ∞ (- ∞ ) - (+ ∞ )     = - ∞

5 * (+ ∞ )  = + ∞ (+ ∞ ) - (- ∞ )     = + ∞



Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract

Magnitude subtraction of infinities:

(+ ∞) + (– ∞)

(– ∞) + (+ ∞)

(+ ∞) – (+ ∞)

(– ∞) – (– ∞)

Multiply 0  ∞

Division

Remainder x REM 0 or ∞ REM y

Square root  x, where x < 0

0     ∞

0     ∞
or



The Effect of IEEE 754 Subnormal Numbers
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Figure 11.26  The Effect of IEEE 754 Subnormal Numbers


