
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(14th Week)

Outline

6. Number Systems

—Computer Arithmetic

+

6.1 Computer Arithmetic

6.1 Outline

• The Arithmetic and Logic Unit

• Integer Representation

• Integer Arithmetic

• Floating-Point Representation

• Floating-Point Arithmetic

Arithmetic & Logic Unit (ALU)

• Part of the computer that actually performs arithmetic

and logical operations on data

• All of the other elements of the computer system are

there mainly to bring data into the ALU for it to process

and then to take the results back out

• Based on the use of simple digital logic devices that can

store binary digits and perform simple Boolean logic

operations

ALU Inputs and Outputs

ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 11.1 ALU Inputs and Outputs

Integer Representation

• In the binary number system arbitrary numbers can be

represented with:

– The digits zero and one

– The minus sign (for negative numbers)

– The period, or radix point (for numbers with a fractional component)

• For purposes of computer storage and processing we do not

have the benefit of special symbols for the minus sign and

radix point

• Only binary digits (0,1) may be used to represent numbers

Sign-Magnitude Representation

There are several alternative
conventions used to represent

negative as well as positive
integers

Sign-magnitude representation is
the simplest form that employs a

sign bit

Drawbacks:

Because of these drawbacks,
sign-magnitude representation is
rarely used in implementing the

integer portion of the ALU

•All of these alternatives involve treating the
most significant (leftmost) bit in the word as a
sign bit

•If the sign bit is 0 the number is positive

•If the sign bit is 1 the number is negative

•Addition and subtraction require a
consideration of both the signs of the
numbers and their relative magnitudes to
carry out the required operation

•There are two representations of 0

Characteristics of Twos Complement

Representation and Arithmetic

Range -2n-1 through 2n-1 - 1

Number of Representations

of Zero
One

Negation

Take the Boolean complement of each bit of the corresponding

positive number, then add 1 to the resulting bit pattern viewed

as an unsigned integer.

Expansion of Bit Length
Add additional bit positions to the left and fill in with the value

of the original sign bit.

Overflow Rule

If two numbers with the same sign (both positive or both nega-

tive) are added, then overflow occurs if and only if the result has

the opposite sign.

Subtraction Rule
To subtract B from A, take the twos complement of B and add

it to A.

Alternative Representations for 4-Bit Integers
Decimal

Representation

Sign-Magnitude

Representation

Twos Complement

Representation

Biased

Representation

+8 – – 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

–0 0000 0000 0111

+0 1000 – –

–1 1001 1111 0110

–2 1010 1110 0101

–3 1011 1101 0100

–4 1100 1100 0011

–5 1101 1011 0010

–6 1110 1010 0001

–7 1111 1001 0000

–8 – 1000 –

Use of a Value Box for Conversion between

Twos Complement Binary and Decimal

–128 64 32 16 8 4 2 1

(a) An eight-position two's complement value box

–128 64 32 16 8 4 2 1

1 0 0 0 0 0 1 1

–128 +2 +1 = –125

(b) Convert binary 10000011 to decimal

 –128 64 32 16 8 4 2 1

 1 0 0 0 1 0 0 0

–120 = –128 +8

(c) Convert decimal –120 to binary

Figure 11.2 Use of a Value Box for Conversion

Between Twos Complement Binary and Decimal

Range Extension

• Range of numbers that can be expressed is extended by increasing

the bit length

• In sign-magnitude notation this is accomplished by moving the sign

bit to the new leftmost position and fill in with zeros

• This procedure will not work for twos complement negative integers

– Rule is to move the sign bit to the new leftmost position and fill in with

copies of the sign bit

– For positive numbers, fill in with zeros, and for negative numbers, fill in

with ones

– This is called sign extension

Fixed-Point Representation

The radix point (binary
point) is fixed and assumed

to be to the right of the
rightmost digit

Programmer can use the
same representation for

binary fractions by scaling
the numbers so that the
binary point is implicitly
positioned at some other

location

Negation

• Twos complement operation

– Take the Boolean complement of each bit of the integer (including

the sign bit)

– Treating the result as an unsigned binary integer, add 1

• The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)

bitwise complement = 11101101

+ 1

11101110 = -18

-18 = 11101110 (twos complement)

bitwise complement = 00010001

+ 1

00010010 = +18

Negation Special Case 1

0 = 00000000 (twos complement)

Bitwise complement = 11111111

Add 1 to LSB + 1

Result 100000000

Overflow is ignored, so:

- 0 = 0

Negation Special Case 2

-128 = 10000000 (twos complement)

Bitwise complement = 01111111

Add 1 to LSB + 1

Result 10000000

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

Addition of Numbers in Twos Complement

Representation

 1001 = –7

 +0101 = 5

 1110 = –2

 1100 = –4

 +0100 = 4

 10000 = 0

(a) (–7) + (+5) (b) (–4) + (+4)

 0011 = 3

 +0100 = 4

 0111 = 7

 1100 = –4

 +1111 = –1

 11011 = –5

(c) (+3) + (+4) (d) (–4) + (–1)

 0101 = 5

 +0100 = 4

 1001 = Overflow

 1001 = –7

 +1010 = –6

 10011 = Overflow

(e) (+5) + (+4) (f) (–7) + (–6)

Figure 11.3 Addition of Numbers in Twos Complement Representation

If two numbers are added, and they are

both positive or both negative, then

overflow occurs if and only if the result

has the opposite sign.

Overflow Rule

To subtract one number (subtrahend)

from another (minuend), take the twos

complement (negation) of the

subtrahend and add it to the minuend.

Subtraction Rule

Subtraction of Numbers in Twos Complement

Representation (M − S)

 0010 = 2

 +1001 = –7

 1011 = –5

 0101 = 5

 +1110 = –2

 10011 = 3

(a) M = 2 = 0010

 S = 7 = 0111

 –S = 1001

(b) M = 5 = 0101

 S = 2 = 0010

 –S = 1110

 1011 = –5

 +1110 = –2

 11001 = –7

 0101 = 5

 +0010 = 2

 0111 = 7

(c) M =–5 = 1011

 S = 2 = 0010

 –S = 1110

(d) M = 5 = 0101

 S =–2 = 1110

 –S = 0010

 0111 = 7

 +0111 = 7

 1110 = Overflow

 1010 = –6

 +1100 = –4

 10110 = Overflow

(e) M = 7 = 0111

 S = –7 = 1001

 –S = 0111

(f) M = –6 = 1010

 S = 4 = 0100

 –S = 1100

Figure 11.4 Subtraction of Numbers in Twos Complement Representation (M – S)

Geometric Depiction of Twos Complement

Integers

0000

0 +1
+2

+3

+4

+5

+6
+7-8-7

-6

-5

-4

-3

-2
-1

0001

addition

of positive

numbers

subtraction

of positive

numbers

0010

0011

0100

0101

0110

0111
1000

(a) 4-bit numbers

Figure 11.5 Geometric Depiction of Twos Complement Integers

(b) n-bit numbers

1001

1010

1011

1100

1101

1110

1111

0-1-2-3-4-5-6-7-8-9 1 2 3 4 5 6 7 8 9

000…0

0

2
n–2

–2
n–1

–2
n–2

-1

addition

of positive

numbers

subtraction

of positive

numbers

010…0

011…1
100…0

110…0

111…1

–2
n–1

–2
n–1

–1 2
n–1

2
n–1

–1

2
n–1

–1

Block Diagram of Hardware for Addition

and Subtraction

AdderOF

OF = overflow bit

SW = Switch (select addition or subtraction)

Complementer

Figure 11.6 Block Diagram of Hardware for Addition and Subtraction

A RegisterB Register

SW

Multiplication of Unsigned Binary Integers

Figure 11.7 Multiplication of Unsigned Binary Integers

 1011

 1101

 1011

 0000

 1011

 1011

10001111

Multiplicand (11)

Multiplier (13)

Product (143)

Partial products

Hardware Implementation of Unsigned

Binary Multiplication

Mn-1

Multiplicand

(a) Block Diagram

(b) Example from Figure 9.7 (product in A, Q)

Figure 11.8 Hardware Implementation of

Unsigned Binary Multiplication

Add

Shift Right

Multiplier

n-Bit Adder
Shift and Add

Control Logic

M0

An-1C A0 Qn-1 Q0

C

0

0

0

0

0

0

1

0

A

0000

1011

0101

0010

1101

0110

0001

1000

Q

1101

1101

1110

1111

1111

1111

1111

1111

M

1011

1011

1011

1011

1011

1011

1011

1011

Initial Values

Add

Shift

Shift

Add

Shift

Add

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle

Flowchart for Unsigned Binary

Multiplication
START

END
YesNo

No Yes

C, A 0

M Multiplicand

Q Multiplier

Count n

Shift right C, A, Q

Count Count – 1

C, A A + M

Q0 = 1?

Count = 0? Product

in A, Q

Figure 11.9 Flowchart for Unsigned Binary Multiplication

Multiplication of Two Unsigned 4-Bit

Integers Yielding an 8-Bit Result

 1011

 ´1101

 00001011 1011 ´ 1 ´ 20

 00000000 1011 ´ 0 ´ 21

 00101100 1011 ´ 1 ´ 22

 01011000 1011 ´ 1 ´ 23

 10001111

Figure 11.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit

Result

Comparison of Multiplication of Unsigned

and Twos Complement Integers

 1001 (9)

 ´0011 (3)

00001001 1001 ´ 20

00010010 1001 ´ 21

00011011 (27)

 1001 (–7)

 ´0011 (3)

11111001 (–7) ´ 20
 = (–7)

11110010 (–7) ´ 21
 = (–14)

11101011 (–21)

(a) Unsigned integers (b) Twos complement integers

Figure 11.11 Comparison of Multiplication of Unsigned and Twos

Complement Integers

Booth’s Algorithm for Twos Complement

Multiplication START

END
YesNo

= 10 = 01

= 11

= 00

A 0, Q-1 0

M Multiplicand

Q Multiplier

Count n

Arithmetic Shift

Right: A, Q, Q-1
Count Count – 1

A A + MA A – M

Q0 , Q-1

Count = 0?

Figure 11.12 Booth's Algorithm for Twos Complement Multiplication

Example of Booth’s Algorithm (7 × 3)

Figure 11.13 Example of Booth's Algorithm (7 3)

Q-1
0

0

1

1

1

0

0

A

0000

1001

1100

1110

0101

0010

0001

Q

0011

0011

1001

0100

0100

1010

0101

M

0111

0111

0111

0111

0111

0111

0111

Initial Values

A A - M

Shift

Shift

A A + M

Shift

Shift

First

Cycle

Second

Cycle

Third

Cycle

Fourth

Cycle

Examples Using Booth’s Algorithm

 0111

 ´0011 (0)

11111001 1–0

0000000 1–1

000111 0–1

00010101 (21)

 0111

 ´1101 (0)

11111001 1–0

0000111 0–1

111001 1–0

11101011 (–21)

(a) (7) ´ (3) = (21) (b) (7) ´ (–3) = (–21)

 1001

 ´0011 (0)

00000111 1–0

0000000 1–1

111001 0–1

11101011 (–21)

 1001

 ´1101 (0)

00000111 1–0

1111001 0–1

000111 1–0

00010101 (21)

(c) (–7) ´ (3) = (–21) (d) (–7) ´ (–3) = (21)

Figure 11.14 Examples Using Booth's Algorithm

Example of Division of Unsigned Binary

Integers

Figure 11.15 Example of Division of Unsigned Binary Integers

 00001101

1011 10010011

 1011

 001110

 1011

 001111

 1011

 100

Quotient

DividendDivisor

Remainder

Partial

remainders

Flowchart for Unsigned Binary Division
START

END
YesNo

No Yes

Quotient in Q

Remainder in A

A 0

M Divisor

Q Dividend

Count n

Shift Left

A, Q

A A – M

Count Count – 1

Q0 1
Q0 0

A A + M

A < 0?

Count = 0?

Figure 11.16 Flowchart for Unsigned Binary Division

Example of Restoring Twos Complement

Division (7/3)

A Q
0000

0111 Initial value

0000

1101

1101

0000

1110

1110

Shift

Use twos complement of 0011 for subtraction

Subtract

Restore, set Q
0
 = 0

0001

1101

1110

0001

1100

1100

Shift

Subtract

Restore, set Q
0
 = 0

0011

1101

0000

1000

1001

Shift

Subtract, set Q
0
 = 1

0001

1101

1110

0001

0010

0010

Shift

Subtract

Restore, set Q
0
 = 0

Figure 11.17 Example of Restoring Twos Complement Division (7/3)

Floating-Point Representation

Principles
• With a fixed-point notation it is possible to represent a range of

positive and negative integers centered on or near 0

• By assuming a fixed binary or radix point, this format allows the

representation of numbers with a fractional component as well

• Limitations:

– Very large numbers cannot be represented nor can very small

fractions

– The fractional part of the quotient in a division of two large

numbers could be lost

Typical 32-Bit Floating-Point Format

8 bits

sign of

significand

significand

23 bits

(a) Format

(b) Examples

Figure 11.18 Typical 32-Bit Floating-Point Format

 1.1010001 210100 = 0 10010011 10100010000000000000000 = 1.6328125 220

-1.1010001 210100 = 1 10010011 10100010000000000000000 = –1.6328125 220

 1.1010001 2-10100 = 0 01101011 10100010000000000000000 = 1.6328125 2–20

-1.1010001 2-10100 = 1 01101011 10100010000000000000000 = –1.6328125 2–20

biased exponent

• The final portion of the word

• Any floating-point number can be expressed in many ways

• Normal number

– The most significant digit of the significand is nonzero

The following are equivalent, where the significand is

expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26

Floating-Point

Significand

Expressible Numbers in Typical 32-Bit

Formats
Expressible Integers

Expressible Negative

Numbers

Negative

Overflow

Positive

Overflow

Negative

Underflow

Zero

Positive

Underflow

Expressible Positive

Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Figure 11.19 Expressible Numbers in Typical 32-Bit Formats

Number

Line

Number

Line

0

0

231 – 1

2–127

–231

–2–127– (2 – 2–23) 2128 (2 – 2–23) 2128

Density of Floating-Point Numbers

0

Figure 11.20 Density of Floating-Point Numbers

–n n 2n 4n

IEEE Standard 754

Most important floating-point
representation is defined

Standard was developed to
facilitate the portability of

programs from one
processor to another and to
encourage the development
of sophisticated, numerically

oriented programs

Standard has been widely
adopted and is used on

virtually all contemporary
processors and arithmetic

coprocessors

IEEE 754-2008 covers both
binary and decimal floating-

point representations

IEEE 754-2008

• Defines the following different types of floating-point formats:

• Arithmetic format
– All the mandatory operations defined by the standard are supported by the format. The

format may be used to represent floating-point operands or results for the operations

described in the standard.

• Basic format
– This format covers five floating-point representations, three binary and two decimal,

whose encodings are specified by the standard, and which can be used for arithmetic.

At least one of the basic formats is implemented in any conforming implementation.

• Interchange format
– A fully specified, fixed-length binary encoding that allows data interchange between

different platforms and that can be used for storage.

IEEE 754 Formats

trailing significand field

(c) binary128 format

Figure 11.21 IEEE 754 Formats

biased

exponent

trailing significand field

(b) binary64 format

8 bits

sign

bit

trailing

significand field

(a) binary32 format

biased

exponent

23 bits

11 bits 52 bits

15 bits 112 bits

sign

bit

biased

exponent

sign

bit

IEEE 754 Format Parameters

Parameter
Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent –126 –1022 –16382

Approx normal number range

(base 10)
10-38, 10+38 10-308, 10+308 10-4932, 10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98  231 1.99  263 1.99  2128

Smallest positive normal number 2-126 2-1022 2-16362

Largest positive normal number 2128 - 2104 21024 - 2971 216384 - 216271

Smallest subnormal magnitude 2-149 2-1074 2-16494

Note: * not including implied bit and not including sign bit.

Additional Formats

Extended Precision Formats

• Provide additional bits in the exponent

(extended range) and in the significand

(extended precision)

• Lessens the chance of a final result that

has been contaminated by excessive

roundoff error

• Lessens the chance of an intermediate

overflow aborting a computation whose

final result would have been

representable in a basic format

• Affords some of the benefits of a larger

basic format without incurring the time

penalty usually associated with higher

precision

Extendable Precision Format

• Precision and range are defined

under user control

• May be used for intermediate

calculations but the standard

places no constraint or format or

length

IEEE Formats

Format
Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k}

(k = n  32 for n > 4)
X X

decimal64 X X X

decimal128 X X X

decimal{k}

(k = n  32 for n > 4)
X X

extended precision X

extendable precision X

Interpretation of IEEE 754 Floating-Point

Numbers (1 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s  0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 0 < e < 225 f 2e-127(1.f)

negative normal nonzero 1 0 < e < 225 f –2e-127(1.f)

positive subnormal 0 0 f  0 2e-126(0.f)

negative subnormal 1 0 f  0 –2e-126(0.f)

(a) binary32 format

Interpretation of IEEE 754 Floating-Point

Numbers (2 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s  0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 0 < e < 2047 f 2e-1023(1.f)

negative normal nonzero 1 0 < e < 2047 f –2e-1023(1.f)

positive subnormal 0 0 f  0 2e-1022(0.f)

negative subnormal 1 0 f  0 –2e-1022(0.f)

(b) binary64 format

Interpretation of IEEE 754 Floating-Point

Numbers (3 of 3)

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 –0

plus infinity 0 all 1s 0 

minus infinity 1 all 1s 0 –

quiet NaN 0 or 1 all 1s  0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s  0; first bit = 0 sNaN

positive normal nonzero 0 all 1s f 2e-16383(1.f)

negative normal nonzero 1 all 1s f –2e-16383(1.f)

positive subnormal 0 0 f  0 2e-16383(0.f)

negative subnormal 1 0 f  0 –2e-16383(0.f)

(c) binary128 format

Floating-Point Numbers and Arithmetic

Operations

Floating-Point Numbers Arithmetic Operations

X = XS  BXE

Y = YS  BYE

X + Y = (XS  BXE-YE + YS)  BYE

X – Y = (XS  BXE-YE – YS)  BYE

X  Y = (XSYS)  BXE+YE

XE  YE

X

Y

XS

YS
= BXE-YE() 

Examples:

X = 0.3  102= 30

Y = 0.2  103= 200

X + Y = (0.3  102-3+ 0.2)  103= 0.23  103= 230

X – Y = (0.3  102-3– 0.2)  103= (– 0.17)  103= –170

X  Y = (0.3  0.2)  102+3= 0.06  105= 6000

X  Y = (0.3  0.2)  102-3= 1.5  10-1= 0.15

Floating-Point Addition and Subtraction

(Z  X  Y)

Figure 11.22 Floating-Point Addition and Subtraction (Z X ± Y)

SUBTRACT

RETURN

ADD

RETURN

Yes

No

No

No

No

No

No

Yes

Z Y Z X

X = 0?

Yes

Yes

Yes

Yes

Yes

Y = 0?

Increment

smaller

exponent

Shift

significand

right

Add

signed

significands

Shift

significand

right

Put other

number in Z

Round

result

Increment

exponent

Change

sign of Y

Report

underflow

Report

overflow RETURN

RETURN

RETURN

RETURN

No

No

No

Yes

Yes
Exponents

equal?

Significand

=0?

Exponent

overflow?

Shift

significand

left

Decrement

exponent

Exponent

underflow?

Results

normalized?

Significand

=0?

Significand

overflow?

Z 0

Floating-Point Multiplication (Z  X  Y)
MULTIPLY

RETURN

RETURN

Yes

No

Z 0

X = 0?

Figure 11.23 Floating-Point Multiplication (Z X Y)

Yes

Yes

Yes

Subtract Bias

Add

Exponents

Report

Overflow

Multiply

Significands

Y = 0?

Exponent

Overflow?

Normalize

Round

Exponent

Underflow?

No

No

No

Report

Underflow

Floating-Point Division (Z  X/Y)
DIVIDE

RETURN

RETURN

Yes

No

Z 0

X = 0?

Figure 11.24 Floating-Point Division (Z X/Y)

Yes

Yes

Yes

Z ∞ Add Bias

Subtract

Exponents

Report

Overflow

Divide

Significands

Y = 0?

Exponent

Overflow?

Normalize

Round

Exponent

Underflow?

No

No

No

Report

Underflow

The Use of Guard Bits

 x = 1.000.....00 ´ 21

 –y = 0.111.....11 ´ 21

 z = 0.000.....01 ´ 21

 = 1.000.....00 ´ 2–22

 x = .100000 ´ 161

 –y = .0FFFFF ´ 161

 z = .000001 ´ 161

 = .100000 ´ 16–4

(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits

 x = 1.000.....00 0000 ´ 21

 –y = 0.111.....11 1000 ´ 21

 z = 0.000.....00 1000 ´ 21

 = 1.000.....00 0000 ´ 2–23

 x = .100000 00 ´ 161

 –y = .0FFFFF F0 ´ 161

 z = .000000 10 ´ 161

 = .100000 00 ´ 16–5

(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits

Figure 11.25 The Use of Guard Bits

Precision Considerations

• IEEE standard approaches:

– Round to nearest:

▪ The result is rounded to the nearest representable
number.

– Round toward +∞ :

▪ The result is rounded up toward plus infinity.

– Round toward -∞:

▪ The result is rounded down toward negative infinity.

– Round toward 0:

▪ The result is rounded toward zero.

Rounding

Interval Arithmetic

• Provides an efficient method for

monitoring and controlling errors in

floating-point computations by

producing two values for each

result

• The two values correspond to the

lower and upper endpoints of an

interval that contains the true result

• The width of the interval indicates

the accuracy of the result

• If the endpoints are not

representable then the interval

endpoints are rounded down and

up respectively

• If the range between the upper and

lower bounds is sufficiently narrow

then a sufficiently accurate result

has been obtained

• Minus infinity and rounding to plus

are useful in implementing interval

arithmetic

Truncation

• Round toward zero

• Extra bits are ignored

• Simplest technique

• A consistent bias toward zero in

the operation

– Serious bias because it affects

every operation for which there

are nonzero extra bits

IEEE Standard for Binary Floating-Point Arithmetic

Infinity
Is treated as the limiting case of real arithmetic, with the infinity values

given the following interpretation:

- ∞ < (every finite number) < + ∞

For example:

5 + (+ ∞) = + ∞ 5÷ (+ ∞) = +0

5 - (+ ∞) = - ∞ (+ ∞) + (+ ∞) = + ∞

5 + (- ∞) = - ∞ (- ∞) + (- ∞) = - ∞

5 - (- ∞) = + ∞ (- ∞) - (+ ∞) = - ∞

5 * (+ ∞) = + ∞ (+ ∞) - (- ∞) = + ∞

Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract

Magnitude subtraction of infinities:

(+ ∞) + (– ∞)

(– ∞) + (+ ∞)

(+ ∞) – (+ ∞)

(– ∞) – (– ∞)

Multiply 0  ∞

Division

Remainder x REM 0 or ∞ REM y

Square root x, where x < 0

0 ∞

0 ∞
or

The Effect of IEEE 754 Subnormal Numbers

2–126 2–125 2–124 2–123

gap

(a) 32-bit format without subnormal numbers

2–126 2–125 2–124 2–123

uniform
spacing

(b) 32-bit format with subnormal numbers

0

0

Figure 11.26 The Effect of IEEE 754 Subnormal Numbers

