
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(13th Week)

Outline

5. Parallel organization

—Parallel Processing

—Multicore Computers

+

5.2 Multicore Computers

5.2 Outline

• Hardware Performance Issues

• Software Performance Issues

• Multicore Organization

• Heterogeneous Multicore Organization

• Intel Core i7-5960X

• ARM Cortex-A15 MPCore

• IBM z13 Mainframe

,Alternative Chip Organizations

Figure 21.1 Alternative Chip Organizations

Instruction fetch unit

Issue logic

Program counter

Execution units and queues

L1 instruction cache

L2 cache

(a) Superscalar

L1 data cache

Single-thread register file

Instruction fetch unit

Issue logic

Execution units and queues

L1 instruction cache

L2 cache

(b) Simultaneous multithreading

L1 data cache

P
C

 1

P
C

 n

R
eg

o
st

er
 1

R
eg

is
te

rs
 n

L
1
-I

L
1
-D

L2 cache

C
o
re

 1

(s
u
p
er

sc
a
la

r
o
r

S
M

T
)

(c) Multicore

L
1
-I

L
1
-D

C
o
re

 2

(s
u
p
er

sc
a
la

r
o
r

S
M

T
)

L
1
-I

L
1
-D

C
o
re

 3

(s
u
p
er

sc
a
la

r
o
r

S
M

T
)

L
1
-I

L
1
-D

C
o
re

 n

(s
u
p
er

sc
a
la

r
o
r

S
M

T
)

Power and Memory Considerations

Power

Memory

Figure 21.2 Power and Memory Considerations

Feature size (µm)

logic

memory

Power density

(watts/cm2)

0.25
1

10

100

0.18 0.13 0.10

Performance Effect of Multiple Cores

Figure 21.3 Performance Effect of Multiple Cores

re
la

ti
v
e

sp
ee

d
u
p

re
la

ti
v
e

sp
ee

d
u
p

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%

5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Scaling of Database Workloads on Multiple-

Processor Hardware

Figure 21.4 Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32

number of processors

sc
a
li
n
g

48 64

pe
rf

ec
t s

ca
lin

g

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

Effective Applications for Multicore

Processors

• Multi-threaded native applications

– Thread-level parallelism

– Characterized by having a small number of highly threaded processes

• Multi-process applications

– Process-level parallelism

– Characterized by the presence of many single-threaded processes

• Java applications

– Embrace threading in a fundamental way

– Java Virtual Machine is a multi-threaded process that provides
scheduling and memory management for Java applications

• Multi-instance applications

– If multiple application instances require some degree of isolation,
virtualization technology can be used to provide each of them with its
own separate and secure environment

Threading Granularity

• The minimal unit of work that can be beneficially parallelized

• The finer the granularity the system enables, the less

constrained is the programmer in parallelizing a program

• Finer grain threading systems allow parallelization in more

situations than coarse-grained ones

• The choice of the target granularity of an architecture involves

an inherent tradeoff

– The finer grain systems are preferable because of the flexibility they

afford to the programmer

– The finer the threading granularity, the more significant part of the

execution is taken by the threading system overhead

Hybrid Threading for Rendering Module

Render

Skybox Main View

Scene List

For each object

Particles

Sim and Draw

Bone Setup

Draw

Character

Etc.

Monitor Etc.

Figure 21.5 Hybrid Threading for Rendering Module

Multicore Organization Alternatives

Figure 21.6 Multicore Organization Alternatives

CPU Core 1

L1-D

L2 cache L2 cache

L1-I

CPU Core n

L1-D L1-I

main memory

(b) Dedicated L2 cache

I /O

CPU Core 1

L1-D

L2 cache

L3 cache

L2 cache

L1-I

CPU Core n

L1-D L1-I

main memory

(d) Shared L3 cache

I /O

CPU Core 1

L1-D

L2 cache

L1-I

CPU Core n

L1-D L1-I

main memory

(c) Shared L2 cache

I /O

CPU Core 1

L1-D L1-I

CPU Core n

L1-D L1-I

L2 cache

main memory

(a) Dedicated L1 cache

I /O

Heterogeneous Multicore Organization

Refers to a processor chip
that includes more than

one kind of core

The most prominent trend
is the use of both CPUs and
graphics processing units
(GPUs) on the same chip

• This mix however presents issues
of coordination and correctness

GPUs are characterized by
the ability to support
thousands of parallel

execution trends

Thus, GPUs are well
matched to applications

that process large amounts
of vector and matrix data

Heterogenous Multicore Chip Elements

Figure 21.7 Heterogeneous Multicore Chip Elements

Cache

CPU

Cache

CPU

On-Chip Interconnection Network

Cache

GPU

Cache

GPU

Last-

Level

Cache

Last-

Level

Cache

DRAM

Controller

DRAM

Controller

CPU GPU

Clock frequency (GHz) 3.8 0.8

Cores 4 384

FLOPS/core 8 2

GFLOPS 121.6 614.4

FLOPS = floating point operations per second.

FLOPS/core = number of parallel floating point operations that can be performed.

Operating Parameters of AMD 5100K

Heterogeneous Multicore Processor

Heterogeneous System Architecture (HSA)

• Key features of the HSA approach include:

– The entire virtual memory space is visible to both CPU and GPU

– The virtual memory system brings in pages to physical main memory as

needed

– A coherent memory policy ensures that CPU and GPU caches both see

an up-to-date view of data

– A unified programming interface that enables users to exploit the parallel

capabilities of the GPUs within programs that rely on CPU execution as

well

• The overall objective is to allow programmers to write

applications that exploit the serial power of CPUs and the

parallel-processing power of GPUs seamlessly with efficient

coordination at the OS and hardware level

Texas Instruments 66AK2H12 Heterogenous

Multicore Chip

Figure 21.8 Texas Instruments 66AK2H12 Heterogenous Multicore Chip

32kB L1

D-Cache

1MB L2 Cache

32kB L1

P-Cache

C66x

DSP

32kB L1
P-Cache

32kB L1
D-Cache

32kB L1
P-Cache

32kB L1
D-Cache

32kB L1
P-Cache

32kB L1
D-Cache

32kB L1
P-Cache

32kB L1
D-Cache

ARM
Cortex-A15

Memory Subsystem

Multicore Navigator

Network
Coprocessor

ARM
Cortex-A15

ARM
Cortex-A15

ARM
Cortex-A15

72-bit
DDR3 EMIF

72-bit
DDR3 EMIF

6MB
MSM
SRAM

Debug & Trace

Boot ROM

Semaphore

Power
Mangement

PLL

EDMA

E
M

IF
1
6

U
S
B

 3
.0

G
P

IO
 x

3
2

P
C

Ie
 x

2

S
R

IO
 x

4

3
x

I2
C

2
x

 U
A

R
T

3
x

 S
P

I

1
G

B
E

1
G

B
E

1
G

B
E

1
G

B
E

5-Port
Ethernet
Switch

Security
Accelerator

Packet
Accelerator

Packet
DMA

Queue
Manager

TeraNet2x HyperLink

5x

5x

8x

8 CSSx DSP cores @ 1.2 GHz

4 ARM cores @ 1.4 Ghz

4MB L2 Cache

MSMC

big.Little Chip Components

Figure 21.9 Big.Litte Chip Components

Cortex-A15

Core

Cortex-A15

Core

L2

Cortex-A7

Core

Cortex-A7

Core

L2

I /O

Coherent

Master

GIC-400 Global Interrupt Controller

Interrupts

Memory Controller Ports System Port

CCI-400 (Cache Coherent Interconnect)

Interrupts

Cortex A-7 and A-15 Pipelines

Figure 21.10 Cortex A-7 and A-15 Pipelines

(b) Cortex A-15 Pipeline

(a) Cortex A-7 Pipeline

Integer Write Back

Multiply

Floating-Point/NEONDecodeFetch

Fetch

Loop Cache

Decode, Rename, & Dispatch

Queue Issue
Integer

Integer

Multiply

Floating-Point/NEON

Branch

Load

Store

Write Back

Issue

Dual Issue

Load/Store

Cortex-A7 and A15 Performance Comparison

Figure 21.11 Cortex-A7 and A15 Performance Comparison

Performance

P
o
w

er

Lowest Cortex-A7 Operating Point

Lowest Cortex-A15 Operating Point

Highest Cortex-A7 Operating Point

Highest Cortex-A15 Operating Point

Cache Coherence

• May be addressed with software-based techniques

– Software burden consumes too many resources in a SoC chip

• When multiple caches exist there is a need for a cache-coherence scheme
to avoid access to invalid data

• There are two main approaches to hardware implemented cache coherence

– Directory protocols

– Snoopy protocols

• ACE (Advanced Extensible Interface Coherence Extensions)

– Hardware coherence capability developed by ARM

– Can be configured to implement whether directory or snoopy approach

– Has been designed to support a wide range of coherent masters with differing
capabilities

– Supports coherency between dissimilar processors enabling ARM big.Little
technology

– Supports I/O coherency for un-cached masters, supports masters with differing
cache line sizes, differing internal cache state models, and masters with write-
back or write-through caches

ARM ACE Cache Line States

Figure 21.12 ARM ACE Cache Line States

Modified

Unique

Ow ned

I nvaiid

Exclusive Shared

Shared I nvalid

C
le

a
n

D
ir

ty

(a) MESIM

Modified Exclusive Shared Invalid

Clean/Dirty Dirty Clean Clean N/A

Unique? Yes Yes No N/A

Can write? Yes Yes No N/A

Can forward? Yes Yes Yes N/A

Comments

Must write

back to share or

replace

Transitions to

M on write

Shared implies

clean, can

forward

Cannot read

(b) MOISI

Modified Owned Exclusive Shared Invalid

Clean/Dirty Dirty Dirty Clean Either N/A

Unique? Yes Yes Yes Yes N/A

Can write? Yes Yes Yes Yes N/A

Can forward? Yes Yes Yes Yes N/A

Comments

Can share

without write

back

Must write

back to

transition

Transitions

to M on write

Shared, can

be dirty or

clean

Cannot read

(Table can be found on page 756 in the textbook.)

Comparison of States in Snoop Protocols

Intel Core i7-5960X Block Diagram

Figure 21.13 Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip

Shared

L3 Cache
I / O

C
o

r
e

C
o

r
e

C
o

r
e

C
o

r
e

M
e

m
o

r
y

 C
o

n
tr

o
ll

e
r

C
o

r
e

C
o

r
e

C
o

r
e

C
o

r
e

Core 0

32 kB

L1-I

32 kB

L1-D

32 kB

L1-I

32 kB

L1-D

32 kB

L1-I

32 kB

L1-D

32 kB

L1-I

32 kB

L1-D

256 kB

L2 Cache

Core 1

• • •

256 kB

L2 Cache

4 8B @ 2.133 GT/s

Core 6

256 kB

L2 Cache

Core 7

256 kB

L2 Cache

20 MB

L3 Cache

DDR4 Memory

Controllers

PCI Express

40 lanes @ 8 GT/s

ARM Cortex-A15 MPCore Chip Block

Diagram

Figure 21.14 ARM Cortex-A15 MPCore Chip Block Diagram

L1

ICache

L1

DCache

Core 0

TLBs
L1

ICache

L1

DCache

Core 1

TLBs
L1

ICache

L1

DCache

Core 2

TLBs
L1

ICache

L1

DCache

Core 3

TLBs

Debug

Unit &

Interface

Trace GIC
Generic

Timer

Snoop

Control

Unit

L2 cache

L2 memory system

Interrupts Timer Events

Interrupt Handling

• Masking of interrupts

• Prioritization of the interrupts

• Distribution of the interrupts to the target A15 cores

• Tracking the status of interrupts

• Generation of interrupts by software

Generic interrupt controller (GIC) provides:

• Is memory mapped

• Is a single functional unit that is placed in the system
alongside A15 cores

• This enables the number of interrupts supported in the
system to be independent of the A15 core design

• Is accessed by the A15 cores using a private interface
through the SCU

GIC

GIC

Designed to satisfy two
functional requirements:

• Provide a means of routing an
interrupt request to a single
CPU or multiple CPUs as
required

• Provide a means of
interprocessor communication
so that a thread on one CPU
can cause activity by a thread
on another CPU

Can route an interrupt to
one or more CPUs in the
following three ways:

• An interrupt can be directed
to a specific processor only

• An interrupt can be directed
to a defined group of
processors

• An interrupt can be directed
to all processors

Interrupts can be:

• Inactive
– One that is nonasserted, or which in a multiprocessing environment has been

completely processed by that CPU but can still be either Pending or Active in some of
the CPUs to which it is targeted, and so might not have been cleared at the interrupt
source

• Pending
– One that has been asserted, and for which processing has not started on that CPU

• Active
– One that has been started on that CPU, but processing is not complete

– Can be pre-empted when a new interrupt of higher priority interrupts A15 core interrupt
processing

• Interrupts come from the following sources:
– Interprocessor interrupts (IPIs)

– Private timer and/or watchdog interrupts

– Legacy FIQ lines

– Hardware interrupts

Generic Interrupt Controller Block Diagram

Interrupt

interface

Priority

Decoder

Interrupt list

Status

Private bus

Read/Write
Core acknowledge and

End Of Interrupt (EOI) information

from CPU interface

Prioritization

and selection

IRQ request

to each CPU

interface

A15 Core 0

Top priority interrupts

PriorityInterrupt number

A15 Core 1

PriorityInterrupt number

A15 Core 2

PriorityInterrupt number

A15 Core 3

PriorityInterrupt number

Figure 21.15 Generic Interrupt Controller Block Diagram

Cache Coherency

• Snoop Control Unit (SCU) resolves most of the traditional bottlenecks related to access to

shared data and the scalability limitation introduced by coherence traffic

• L1 cache coherency scheme is based on the MESI protocol

• Direct Data Intervention (DDI)

– Enables copying clean data between L1 caches without accessing external memory

– Reduces read after write from L1 to L2

– Can resolve local L1 miss from remote L1 rather than L2

• Duplicated tag RAMs

– Cache tags implemented as separate block of RAM

– Same length as number of lines in cache

– Duplicates used by SCU to check data availability before sending coherency commands

– Only send to CPUs that must update coherent data cache

• Migratory lines

– Allows moving dirty data between CPUs without writing to L2 and reading back from external

memory

IBM z13 Drawer Structure

IBM z13 Cache Hierarchy in Single Node

