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5.2 Multicore Computers



5.2 Outline

• Hardware Performance Issues

• Software Performance Issues

• Multicore Organization

• Heterogeneous Multicore Organization

• Intel Core i7-5960X

• ARM Cortex-A15 MPCore

• IBM z13 Mainframe



,Alternative Chip Organizations

Figure 21.1  Alternative Chip Organizations
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Power and Memory Considerations
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Figure 21.2 Power and Memory Considerations
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Performance Effect of Multiple Cores

Figure 21.3  Performance Effect of Multiple Cores
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Scaling of Database Workloads on Multiple-

Processor Hardware

Figure 21.4  Scaling of Database Workloads on Multiple-Processor Hardware
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Effective Applications for Multicore 

Processors

• Multi-threaded native applications

– Thread-level parallelism

– Characterized by having a small number of highly threaded processes

• Multi-process applications

– Process-level parallelism

– Characterized by the presence of many single-threaded processes

• Java applications

– Embrace threading in a fundamental way

– Java Virtual Machine is a multi-threaded process that provides 
scheduling and memory management for Java applications

• Multi-instance applications

– If multiple application instances require some degree of isolation, 
virtualization technology can be used to provide each of them with its 
own separate and secure environment



Threading Granularity

• The minimal unit of work that can be beneficially parallelized

• The finer the granularity the system enables, the less 

constrained is the programmer in parallelizing a program

• Finer grain threading systems allow parallelization in more 

situations than coarse-grained ones

• The choice of the target granularity of an architecture involves 

an inherent tradeoff

– The finer grain systems are preferable because of the flexibility they 

afford to the programmer

– The finer the threading granularity, the more significant part of the 

execution is taken by the threading system overhead



Hybrid Threading for Rendering Module
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Figure 21.5  Hybrid Threading for Rendering Module



Multicore Organization Alternatives

Figure 21.6  Multicore Organization Alternatives
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Heterogeneous Multicore Organization

Refers to a processor chip 
that includes more than 

one kind of core

The most prominent trend 
is the use of both CPUs and 
graphics processing units 
(GPUs) on the same chip

• This mix however presents issues 
of coordination and correctness

GPUs are characterized by 
the ability to support 
thousands of parallel 

execution trends

Thus, GPUs are well 
matched to applications 

that process large amounts 
of vector and matrix data



Heterogenous Multicore Chip Elements

Figure 21.7  Heterogeneous Multicore Chip Elements
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CPU GPU

Clock frequency (GHz) 3.8 0.8

Cores 4 384

FLOPS/core 8 2

GFLOPS 121.6 614.4

FLOPS = floating point operations per second.

FLOPS/core = number of parallel floating point operations that can be performed.

Operating Parameters of AMD 5100K 

Heterogeneous Multicore Processor 



Heterogeneous System Architecture (HSA)

• Key features of the HSA approach include:

– The entire virtual memory space is visible to both CPU and GPU

– The virtual memory system brings in pages to physical main memory as 

needed

– A coherent memory policy ensures that CPU and GPU caches both see 

an up-to-date view of data

– A unified programming interface that enables users to exploit the parallel 

capabilities of the GPUs within programs that rely on CPU execution as 

well

• The overall objective is to allow programmers to write 

applications that exploit the serial power of CPUs and the 

parallel-processing power of GPUs seamlessly with efficient 

coordination at the OS and hardware level



Texas Instruments 66AK2H12 Heterogenous

Multicore Chip

Figure 21.8  Texas Instruments 66AK2H12 Heterogenous Multicore Chip
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big.Little Chip Components

Figure 21.9  Big.Litte Chip Components
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Cortex A-7 and A-15 Pipelines

Figure 21.10  Cortex A-7 and A-15 Pipelines
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Cortex-A7 and A15 Performance Comparison

Figure 21.11   Cortex-A7 and A15 Performance Comparison
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Cache Coherence

• May be addressed with software-based techniques

– Software burden consumes too many resources in a SoC chip

• When multiple caches exist there is a need for a cache-coherence scheme 
to avoid access to invalid data

• There are two main approaches to hardware implemented cache coherence

– Directory protocols

– Snoopy protocols

• ACE (Advanced Extensible Interface Coherence Extensions)

– Hardware coherence capability developed by ARM

– Can be configured to implement whether directory or snoopy approach

– Has been designed to support a wide range of coherent masters with differing 
capabilities

– Supports coherency between dissimilar processors enabling ARM big.Little
technology

– Supports I/O coherency for un-cached masters, supports masters with differing 
cache line sizes, differing internal cache state models, and masters with write-
back or write-through caches



ARM ACE Cache Line States

Figure 21.12   ARM ACE Cache Line States
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(a) MESIM

Modified Exclusive Shared Invalid

Clean/Dirty Dirty Clean Clean N/A

Unique? Yes Yes No N/A

Can write? Yes Yes No N/A

Can forward? Yes Yes Yes N/A

Comments

Must write

back to share or

replace

Transitions to

M on write

Shared implies

clean, can

forward

Cannot read

(b) MOISI

Modified Owned Exclusive Shared Invalid

Clean/Dirty Dirty Dirty Clean Either N/A

Unique? Yes Yes Yes Yes N/A

Can write? Yes Yes Yes Yes N/A

Can forward? Yes Yes Yes Yes N/A

Comments

Can share

without write

back

Must write

back to

transition

Transitions

to M on write

Shared, can

be dirty or

clean

Cannot read

(Table can be found on page 756 in the textbook.)

Comparison of States in Snoop Protocols



Intel Core i7-5960X Block Diagram

Figure 21.13  Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip
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ARM Cortex-A15 MPCore Chip Block 

Diagram

Figure 21.14  ARM Cortex-A15 MPCore Chip Block Diagram
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Interrupt Handling

• Masking of interrupts

• Prioritization of the interrupts

• Distribution of the interrupts to the target A15 cores

• Tracking the status of interrupts

• Generation of interrupts by software

Generic interrupt controller (GIC) provides:

• Is memory mapped

• Is a single functional unit that is placed in the system 
alongside A15 cores

• This enables the number of interrupts supported in the 
system to be independent of the A15 core design

• Is accessed by the A15 cores using a private interface 
through the SCU

GIC



GIC

Designed to satisfy two 
functional requirements:

• Provide a means of routing an 
interrupt request to a single 
CPU or multiple CPUs as 
required

• Provide a means of 
interprocessor communication 
so that a thread on one CPU 
can cause activity by a thread 
on another CPU

Can route an interrupt to 
one or more CPUs in the 
following three ways:

• An interrupt can be directed 
to a specific processor only

• An interrupt can be directed 
to a defined group of 
processors

• An interrupt can be directed 
to all processors



Interrupts can be:

• Inactive
– One that is nonasserted, or which in a multiprocessing environment has been 

completely processed by that CPU but can still be either Pending or Active in some of 
the CPUs to which it is targeted, and so might not have been cleared at the interrupt 
source

• Pending
– One that has been asserted, and for which processing has not started on that CPU

• Active
– One that has been started on that CPU, but processing is not complete 

– Can be pre-empted when a new interrupt of higher priority interrupts A15 core interrupt 
processing

• Interrupts come from the following sources:
– Interprocessor interrupts (IPIs)

– Private timer and/or watchdog interrupts

– Legacy FIQ lines

– Hardware interrupts



Generic Interrupt Controller Block Diagram
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Cache Coherency

• Snoop Control Unit (SCU) resolves most of the traditional bottlenecks related to access to 

shared data and the scalability limitation introduced by coherence traffic

• L1 cache coherency scheme is based on the MESI protocol

• Direct Data Intervention (DDI)

– Enables copying clean data between L1 caches without accessing external memory

– Reduces read after write from L1 to L2

– Can resolve local L1 miss from remote L1 rather than L2

• Duplicated tag RAMs

– Cache tags implemented as separate block of RAM

– Same length as number of lines in cache

– Duplicates used by SCU to check data availability before sending coherency commands

– Only send to CPUs that must update coherent data cache

• Migratory lines

– Allows moving dirty data between CPUs without writing to L2 and reading back from external 

memory



IBM z13 Drawer Structure



IBM z13 Cache Hierarchy in Single Node


