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5.1 Parallel Processing



5.1 Outline

• Multiple Processors Organization

• Symmetric Multiprocessors

• Cache Coherence and the MESI Protocol

• Multithreading and Chip Multiprocessors

• Clusters

• Nonuniform Memory Access



Multiple Processor Organization

• Single instruction, single data 

(SISD) stream
– Single processor executes a 

single instruction stream to 

operate on data stored in a 

single memory

– Uniprocessors fall into this 

category

• Single instruction, multiple 

data (SIMD) stream
– A single machine instruction 

controls the simultaneous 

execution of a number of 

processing elements on a 

lockstep basis

– Vector and array processors 

fall into this category

• Multiple instruction, single data 

(MISD) stream

– A sequence of data is transmitted to 

a set of processors, each of which 

executes a different instruction 

sequence

– Not commercially implemented

• Multiple instruction, multiple data 

(MIMD) stream
– A set of processors 

simultaneously execute different 

instruction sequences on different 

data sets

– SMPs, clusters and NUMA 

systems fit this category



A Taxonomy of Parallel Processor 

Architectures
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Figure 20.1  A Taxonomy of Parallel Processor Architectures



Alternative Computer Organizations
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Figure 20.2  Alternative Computer Organizations

CU = control unit

IS = instruction stream

PU = processing unit

DS = data stream

MU = memory unit

LM = local memory

SISD = single instruction,

 single data stream

SIMD = single instruction,

 multiple data stream

MIMD = multiple instruction,

 multiple data stream



Symmetric Multiprocessor (SMP)

A stand alone computer with 
the following characteristics:

Two or more 
similar 

processors of 
comparable 

capacity

Processors 
share same 
memory and 
I/O facilities

• Processors are 
connected by a 
bus or other 
internal 
connection

• Memory access 
time is 
approximately 
the same for 
each processor

All 
processors 
share access 
to I/O 
devices

• Either through 
same channels 
or different 
channels giving 
paths to same 
devices

All 
processors 

can perform 
the same 
functions 
(hence 

“symmetric”)

System 
controlled by 
integrated 
operating 
system

• Provides 
interaction 
between 
processors and 
their programs 
at job, task, file 
and data 
element levels



Multiprogramming and Multiprocessing

Process 1

Figure 20.3  Multiprogramming and Multiprocessing

Process 2

Process 3

(a)  Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b)  Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time



Generic Block Diagram of a Tightly Coupled 

Multiprocessor
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Figure 20.4  Generic Block Diagram of a Tightly Coupled Multiprocessor
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Symmetric Multiprocessor Organization
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Figure 20.5  Symmetric Multiprocessor Organization
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• Simplicity

– Simplest approach to multiprocessor organization

• Flexibility

– Generally easy to expand the system by attaching more 

processors to the bus

• Reliability

– The bus is essentially a passive medium and the failure of 

any attached device should not cause failure of the whole 

system

The bus organization has several 

attractive features:



• Main drawback is performance

– All memory references pass through the common bus

– Performance is limited by bus cycle time

• Each processor should have cache memory

– Reduces the number of bus accesses

• Leads to problems with cache coherence

– If a word is altered in one cache it could conceivably invalidate a 

word in another cache

▪ To prevent this the other processors must be alerted that an update 

has taken place

– Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:



Multiprocessor Operating System Design 

Considerations

• Simultaneous concurrent processes

– OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

– OS tables and management structures must be managed properly to avoid deadlock or invalid operations

• Scheduling

– Any processor may perform scheduling so conflicts must be avoided

– Scheduler must assign ready processes to available processors

• Synchronization

– With multiple active processes having potential access to shared address spaces or I/O resources, care must 

be taken to provide effective synchronization

– Synchronization is a facility that enforces mutual exclusion and event ordering

• Memory management

– In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the 

available hardware parallelism to achieve the best performance

– Paging mechanisms on different processors must be coordinated to enforce consistency when several 

processors share a page or segment and to decide on page replacement

• Reliability and fault tolerance

– OS should provide graceful degradation in the face of processor failure

– Scheduler and other portions of the operating system must recognize the loss of a processor and restructure 

accordingly



Cache Coherence (1 of 2)

Software Solutions

• Attempt to avoid the need for additional hardware circuitry 

and logic by relying on the compiler and operating system to 

deal with the problem

• Attractive because the overhead of detecting potential 

problems is transferred from run time to compile time, and 

the design complexity is transferred from hardware to 

software
– However, compile-time software approaches generally must 

make conservative decisions, leading to inefficient cache 

utilization



Cache Coherence (2 of 2)

Hardware-Based Solutions

• Generally referred to as cache coherence protocols

• These solutions provide dynamic recognition at run time of 

potential inconsistency conditions

• Because the problem is only dealt with when it actually arises 

there is more effective use of caches, leading to improved 

performance over a software approach

• Approaches are transparent to the programmer and the 

compiler, reducing the software development burden

• Can be divided into two categories:

– Directory protocols

– Snoopy protocols



Directory Protocols

Collect and maintain 
information about 
copies of data in 

cache

Directory stored in 
main memory

Requests are 
checked against 

directory

Appropriate 
transfers are 
performed

Creates central 
bottleneck

Effective in large 
scale systems with 

complex 
interconnection 

schemes



Snoopy Protocols

• Distribute the responsibility for maintaining cache coherence among 
all of the cache controllers in a multiprocessor

– A cache must recognize when a line that it holds is shared with other caches

– When updates are performed on a shared cache line, it must be announced 
to other caches by a broadcast mechanism

– Each cache controller is able to “snoop” on the network to observe these 
broadcast notifications and react accordingly

• Suited to bus-based multiprocessor because the shared bus 
provides a simple means for broadcasting and snooping

– Care must be taken that the increased bus traffic required for broadcasting 
and snooping does not cancel out the gains from the use of local caches

• Two basic approaches have been explored:

– Write invalidate

– Write update (or write broadcast)



Write Invalidate

• Multiple readers, but only one writer at a time

• When a write is required, all other caches of the line are 

invalidated

• Writing processor then has exclusive (cheap) access until line 

is required by another processor

• Most widely used in commercial multiprocessor systems such 

as the x86 architecture

• State of every line is marked as modified, exclusive, shared or 

invalid

– For this reason the write-invalidate protocol is called MESI



Write Update

Can be multiple readers and writers

When a processor wishes to update a shared line 
the word to be updated is distributed to all others 
and caches containing that line can update it

Some systems use an adaptive mixture of both 
write-invalidate and write-update mechanisms



MESI Protocol

To provide cache consistency on an SMP the data cache 

supports a protocol known as MESI:

• Modified
– The line in the cache has been modified and is available 

only in this cache

• Exclusive
– The line in the cache is the same as that in main memory 

and is not present in any other cache

• Shared
– The line in the cache is the same as that in main memory 

and may be present in another cache

• Invalid
– The line in the cache does not contain valid data 



M
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MESI State Transition Diagram

Dirty line copyback

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

RH Read hit
RMS Read miss, shared
RME Read miss, exclusive
WH Write hit
WM Write miss
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SHW Snoop hit on write or

read-with-intent-to-modify

Figure 20.6  MESI State Transition Diagram
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Relationship Between Cache Lines in Cooperating 

Caches



Read Miss

• When a read miss occurs in the local cache, the 

processor initiates a memory read to read the line of 

main memory containing the missing address

• The processor inserts a signal on the bus that alerts all 

other processor/cache units to snoop the transaction

• There are a number of possible outcomes resulting from 

this process



Read Hit

When a read hit occurs on a line 
currently in the local cache, the 

processor simply reads the required item

There is no state change

The state remains modified, shared, or 
exclusive



Write Miss

• When a write miss occurs in the local cache, the processor 

initiates a memory read to read the line of main memory 

containing the missing address

• For this purpose, the processor issues a signal on the bus 

that means read-with-intent-to-modify (RWITM)

• When the line is loaded, it is immediately marked modified

• With respect to other caches, two possible scenarios precede 

the loading of the line of data

▪ Some other cache may have a modified copy of this line

▪ No other cache has a modified copy of the requested line



Write Hit

• When a write hit occurs on a line currently in the local cache, the 

effect depends on the current state of that line in the local cache:

– Shared

– Before performing the update, the processor must gain exclusive 

ownership of the line

– The processor signals its intent on the bus

– Each processor that has a shared copy of the line in its cache transitions 

the sector from shared to invalid

– The initiating processor then performs the update and transitions its 

copy of the line from shared to modified

– Exclusive

– The processor already has exclusive control of this line, and so it simply 

performs the update and transitions its copy of the line from exclusive to 

modified

– Modified 

– The processor already has exclusive control of this line and has the line 

marked as modified, and so it simply performs the update



Initiator Reads from Writeback Cache



Initiator Writes to Writeback Cache



Multithreading and Chip Multiprocessors

• Processor performance can be measured by the rate at which it 

executes instructions

• MIPS rate = f * IPC

– f = processor clock frequency, in MHz

– IPC = average instructions per cycle

• Increase performance by increasing clock frequency and increasing 

instructions that complete during cycle

• Multithreading

– Allows for a high degree of instruction-level parallelism without 

increasing circuit complexity or power consumption

– Instruction stream is divided into several smaller streams, known as 

threads, that can be executed in parallel



Definitions of Threads 

and Processes Thread in multithreaded 
processors may or may not be 

the same as the concept of 
software threads in a 

multiprogrammed operating 
system

Thread is concerned with 
scheduling and execution, 

whereas a process is 
concerned with both 

scheduling/execution and 
resource and resource 

ownership

Process: 

•An instance of program running on 
computer

•Two key characteristics:

•Resource ownership

•Scheduling/execution

Process switch

•Operation that switches the processor 
from one process to another by saving all 
the process control data, registers, and 
other information for the first and 
replacing them with the process 
information for the second

Thread: 

•Dispatchable unit of work within a 
process

• Includes processor context (which 
includes the program counter and 
stack pointer) and data area for stack

•Executes sequentially and is 
interruptible so that the processor can 
turn to another thread

Thread switch

•The act of switching processor control 
between threads within the same 
process

•Typically less costly than process 
switch



Implicit and Explicit Multithreading

• All commercial processors and most 

experimental ones use explicit multithreading

– Concurrently execute instructions from different 

explicit threads

– Interleave instructions from different threads on 

shared pipelines or parallel execution on parallel 

pipelines

• Implicit multithreading is concurrent execution 

of multiple threads extracted from single 

sequential program

– Implicit threads defined statically by compiler or 

dynamically by hardware



Approaches to Explicit Multithreading

• Interleaved

– Fine-grained

– Processor deals with two or 
more thread contexts at a time

– Switching thread at each clock 
cycle

– If thread is blocked it is skipped

• Simultaneous (SMT)

– Instructions are simultaneously 
issued from multiple threads to 
execution units of superscalar 
processor

• Blocked 

– Coarse-grained 

– Thread executed until event 
causes delay

– Effective on in-order 
processor

– Avoids pipeline stall

• Chip multiprocessing

– Processor is replicated on a 
single chip

– Each processor handles 
separate threads

– Advantage is that the 
available logic area on a 
chip is used effectively



Approaches to Executing Multiple Threads
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Figure 20.10  Approaches to Executing Multiple Threads
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Clusters

• Alternative to SMP as an approach to providing high performance and high 

availability

• Particularly attractive for server applications

• Defined as:

– A group of interconnected whole computers working together as a unified computing 

resource that can create the illusion of being one machine

– (The term whole computer means a system that can run on its own, apart from the 

cluster)

• Each computer in a cluster is called a node

• Benefits:

– Absolute scalability

– Incremental scalability

– High availability

– Superior price/performance



Cluster Configurations
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Figure 20.11  Cluster Configurations
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Clustering Method Description Benefits Limitations

Passive Standby A secondary server takes 

over in case of primary 

server failure.

Easy to implement. High cost because the 

secondary server is 

unavailable for other 

processing tasks.

Active Secondary: The secondary server is

also used for processing

tasks.

Reduced cost because

secondary servers can 

be used for processing.

Increased complexity.

Separate Servers Separate servers have

their own disks. Data

is continuously copied

from primary to secondary

server.

High availability. High network and server

overhead due to copying

operations.

Servers Connected to

Disks

Servers are cabled to

the same disks, but each

server owns its disks. If

one server fails, its disks

are taken over by the

other server.

Reduced network and

server overhead due to

elimination of copying

operations.

Usually requires disk

mirroring or RAID 

technology to 

compensate

for risk of disk failure.

Servers Share Disks Multiple servers simul-

taneously share access

to disks.

Low network and server 

overhead. Reduced risk 

of downtime caused by

disk failure.

Requires lock manager

software. Usually used

with disk mirroring or

RAID technology.

Clustering Methods: Benefits and Limitations 



Nonuniform Memory Access (NUMA)

• Alternative to SMP and clustering

• Uniform memory access (UMA)
– All processors have access to all parts of  main memory using loads and 

stores

– Access time to all regions of memory is the same

– Access time to memory for different processors is the same

• Nonuniform memory access (NUMA)
– All processors have access to all parts of main memory using loads and 

stores

– Access time of processor differs depending on which region of main memory 
is being accessed

– Different processors access different regions of memory at different speeds

• Cache-coherent NUMA (CC-NUMA)
– A NUMA system in which cache coherence is maintained among the caches of the 

various processors



Motivation

SMP has practical limit to 
number of processors that 
can be used

• Bus traffic limits to between 16 
and 64 processors

In clusters each node has its 
own private main memory

• Applications do not see a large 
global memory

• Coherency is maintained by 
software rather than hardware

NUMA retains SMP flavor 
while giving large scale 

multiprocessing

Objective with NUMA is to 
maintain a transparent 

system wide memory while 
permitting multiple 

multiprocessor nodes, each 
with its own bus or internal 

interconnect system



CC-NUMA Organization
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NUMA Pros and Cons

• Main advantage of a CC-

NUMA system is that it can 

deliver effective performance 

at higher levels of parallelism 

than SMP without requiring 

major software changes

• Bus traffic on any individual 

node is limited to a demand 

that the bus can handle

• If many of the memory 

accesses are to remote 

nodes, performance begins to 

break down

• Does not transparently look 

like an SMP

• Software changes will be 

required to move an 

operating system and 

applications from an SMP to 

a CC-NUMA system

• Concern with availability


