
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(12th Week)

Outline

5. Parallel organization

—Parallel Processing

—Multicore Computers

+

5.1 Parallel Processing

5.1 Outline

• Multiple Processors Organization

• Symmetric Multiprocessors

• Cache Coherence and the MESI Protocol

• Multithreading and Chip Multiprocessors

• Clusters

• Nonuniform Memory Access

Multiple Processor Organization

• Single instruction, single data

(SISD) stream
– Single processor executes a

single instruction stream to

operate on data stored in a

single memory

– Uniprocessors fall into this

category

• Single instruction, multiple

data (SIMD) stream
– A single machine instruction

controls the simultaneous

execution of a number of

processing elements on a

lockstep basis

– Vector and array processors

fall into this category

• Multiple instruction, single data

(MISD) stream

– A sequence of data is transmitted to

a set of processors, each of which

executes a different instruction

sequence

– Not commercially implemented

• Multiple instruction, multiple data

(MIMD) stream
– A set of processors

simultaneously execute different

instruction sequences on different

data sets

– SMPs, clusters and NUMA

systems fit this category

A Taxonomy of Parallel Processor

Architectures

Processor Organizations

Single Instruction,

Single Data Stream

(SISD)

Single Instruction,

Multiple Data Stream

(SIMD)

Multiple Instruction,

Single Data Stream

(MISD)

Multiple Instruction,

Multiple Data Stream

(MIMD)

Vector

Processor

Clusters

Uniprocessor

Array

Processor

Symmetric

Multiprocessor

(SMP)

Nonumiform

Memory

Access

(NUMA)

Shared Memory

(tightly coupled)

Distributed Memory

(loosely coupled)

Figure 20.1 A Taxonomy of Parallel Processor Architectures

Alternative Computer Organizations

LMn

DS

LM1

LM2

DS

DS

IS

IS

IS

CU

PUn LMn

DS

PU1 LM1

PU2 LM2

DS

DS

IS

(b) SIMD (with distributed memory)

CU
IS

(a) SISD

PU MU
DS

CU1

CU2

CUn PUn

IS

IS

IS DS

(c) MIMD (with shared memory)

PU1

PU2

DS

DS

CU1

CU2

CUn PUn

PU1

PU2

In
te

rc
o
n

n
ec

ti
o
n

N
et

w
o
rk

S
h
a
re

d

M
em

o
ry

(d) MIMD (with distributed memory)

Figure 20.2 Alternative Computer Organizations

CU = control unit

IS = instruction stream

PU = processing unit

DS = data stream

MU = memory unit

LM = local memory

SISD = single instruction,

 single data stream

SIMD = single instruction,

 multiple data stream

MIMD = multiple instruction,

 multiple data stream

Symmetric Multiprocessor (SMP)

A stand alone computer with
the following characteristics:

Two or more
similar

processors of
comparable

capacity

Processors
share same
memory and
I/O facilities

• Processors are
connected by a
bus or other
internal
connection

• Memory access
time is
approximately
the same for
each processor

All
processors
share access
to I/O
devices

• Either through
same channels
or different
channels giving
paths to same
devices

All
processors

can perform
the same
functions
(hence

“symmetric”)

System
controlled by
integrated
operating
system

• Provides
interaction
between
processors and
their programs
at job, task, file
and data
element levels

Multiprogramming and Multiprocessing

Process 1

Figure 20.3 Multiprogramming and Multiprocessing

Process 2

Process 3

(a) Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

Generic Block Diagram of a Tightly Coupled

Multiprocessor

Processor

Main Memory

Interconnection

Network

Figure 20.4 Generic Block Diagram of a Tightly Coupled Multiprocessor

Processor Processor

I /O

I /O

I /O

Symmetric Multiprocessor Organization

L1 Cache

Processor

Main

Memory I /O

Subsytem

shared bus

I /O

Adapter

Processor Processor

Figure 20.5 Symmetric Multiprocessor Organization

L1 Cache L1 Cache

L2 Cache L2 Cache L2 Cache

I /O

Adapter

I /O

Adapter

• Simplicity

– Simplest approach to multiprocessor organization

• Flexibility

– Generally easy to expand the system by attaching more

processors to the bus

• Reliability

– The bus is essentially a passive medium and the failure of

any attached device should not cause failure of the whole

system

The bus organization has several

attractive features:

• Main drawback is performance

– All memory references pass through the common bus

– Performance is limited by bus cycle time

• Each processor should have cache memory

– Reduces the number of bus accesses

• Leads to problems with cache coherence

– If a word is altered in one cache it could conceivably invalidate a

word in another cache

▪ To prevent this the other processors must be alerted that an update

has taken place

– Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:

Multiprocessor Operating System Design

Considerations

• Simultaneous concurrent processes

– OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

– OS tables and management structures must be managed properly to avoid deadlock or invalid operations

• Scheduling

– Any processor may perform scheduling so conflicts must be avoided

– Scheduler must assign ready processes to available processors

• Synchronization

– With multiple active processes having potential access to shared address spaces or I/O resources, care must

be taken to provide effective synchronization

– Synchronization is a facility that enforces mutual exclusion and event ordering

• Memory management

– In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the

available hardware parallelism to achieve the best performance

– Paging mechanisms on different processors must be coordinated to enforce consistency when several

processors share a page or segment and to decide on page replacement

• Reliability and fault tolerance

– OS should provide graceful degradation in the face of processor failure

– Scheduler and other portions of the operating system must recognize the loss of a processor and restructure

accordingly

Cache Coherence (1 of 2)

Software Solutions

• Attempt to avoid the need for additional hardware circuitry

and logic by relying on the compiler and operating system to

deal with the problem

• Attractive because the overhead of detecting potential

problems is transferred from run time to compile time, and

the design complexity is transferred from hardware to

software
– However, compile-time software approaches generally must

make conservative decisions, leading to inefficient cache

utilization

Cache Coherence (2 of 2)

Hardware-Based Solutions

• Generally referred to as cache coherence protocols

• These solutions provide dynamic recognition at run time of

potential inconsistency conditions

• Because the problem is only dealt with when it actually arises

there is more effective use of caches, leading to improved

performance over a software approach

• Approaches are transparent to the programmer and the

compiler, reducing the software development burden

• Can be divided into two categories:

– Directory protocols

– Snoopy protocols

Directory Protocols

Collect and maintain
information about
copies of data in

cache

Directory stored in
main memory

Requests are
checked against

directory

Appropriate
transfers are
performed

Creates central
bottleneck

Effective in large
scale systems with

complex
interconnection

schemes

Snoopy Protocols

• Distribute the responsibility for maintaining cache coherence among
all of the cache controllers in a multiprocessor

– A cache must recognize when a line that it holds is shared with other caches

– When updates are performed on a shared cache line, it must be announced
to other caches by a broadcast mechanism

– Each cache controller is able to “snoop” on the network to observe these
broadcast notifications and react accordingly

• Suited to bus-based multiprocessor because the shared bus
provides a simple means for broadcasting and snooping

– Care must be taken that the increased bus traffic required for broadcasting
and snooping does not cancel out the gains from the use of local caches

• Two basic approaches have been explored:

– Write invalidate

– Write update (or write broadcast)

Write Invalidate

• Multiple readers, but only one writer at a time

• When a write is required, all other caches of the line are

invalidated

• Writing processor then has exclusive (cheap) access until line

is required by another processor

• Most widely used in commercial multiprocessor systems such

as the x86 architecture

• State of every line is marked as modified, exclusive, shared or

invalid

– For this reason the write-invalidate protocol is called MESI

Write Update

Can be multiple readers and writers

When a processor wishes to update a shared line
the word to be updated is distributed to all others
and caches containing that line can update it

Some systems use an adaptive mixture of both
write-invalidate and write-update mechanisms

MESI Protocol

To provide cache consistency on an SMP the data cache

supports a protocol known as MESI:

• Modified
– The line in the cache has been modified and is available

only in this cache

• Exclusive
– The line in the cache is the same as that in main memory

and is not present in any other cache

• Shared
– The line in the cache is the same as that in main memory

and may be present in another cache

• Invalid
– The line in the cache does not contain valid data

M

Modified

E

Exclusive

S

Shared

I

Invalid

This cache line valid? Yes Yes Yes No

The memory copy is … out of date valid valid –

Copies exist in other caches? No No Maybe Maybe

A write to this line …
does not go

to bus

does not go

to bus

goes to bus and

updates cache

goes directly

to bus

MESI Cache Line States

MESI State Transition Diagram

Dirty line copyback

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

RH Read hit
RMS Read miss, shared
RME Read miss, exclusive
WH Write hit
WM Write miss
SHR Snoop hit on read
SHW Snoop hit on write or

read-with-intent-to-modify

Figure 20.6 MESI State Transition Diagram

Invalid Shared

Modified

(a) Line in cache at initiating pr ocessor

RH

WH

RH

RH

Exclusive

RMS

WH

SHW

SH
W

R
M

E

SH
R

Invalid Shared

Modified

(b) Line in snooping cache

Exclusive

S
H

R

S
H

W

W
M

SHR

W
H

Relationship Between Cache Lines in Cooperating

Caches

Read Miss

• When a read miss occurs in the local cache, the

processor initiates a memory read to read the line of

main memory containing the missing address

• The processor inserts a signal on the bus that alerts all

other processor/cache units to snoop the transaction

• There are a number of possible outcomes resulting from

this process

Read Hit

When a read hit occurs on a line
currently in the local cache, the

processor simply reads the required item

There is no state change

The state remains modified, shared, or
exclusive

Write Miss

• When a write miss occurs in the local cache, the processor

initiates a memory read to read the line of main memory

containing the missing address

• For this purpose, the processor issues a signal on the bus

that means read-with-intent-to-modify (RWITM)

• When the line is loaded, it is immediately marked modified

• With respect to other caches, two possible scenarios precede

the loading of the line of data

▪ Some other cache may have a modified copy of this line

▪ No other cache has a modified copy of the requested line

Write Hit

• When a write hit occurs on a line currently in the local cache, the

effect depends on the current state of that line in the local cache:

– Shared

– Before performing the update, the processor must gain exclusive

ownership of the line

– The processor signals its intent on the bus

– Each processor that has a shared copy of the line in its cache transitions

the sector from shared to invalid

– The initiating processor then performs the update and transitions its

copy of the line from shared to modified

– Exclusive

– The processor already has exclusive control of this line, and so it simply

performs the update and transitions its copy of the line from exclusive to

modified

– Modified

– The processor already has exclusive control of this line and has the line

marked as modified, and so it simply performs the update

Initiator Reads from Writeback Cache

Initiator Writes to Writeback Cache

Multithreading and Chip Multiprocessors

• Processor performance can be measured by the rate at which it

executes instructions

• MIPS rate = f * IPC

– f = processor clock frequency, in MHz

– IPC = average instructions per cycle

• Increase performance by increasing clock frequency and increasing

instructions that complete during cycle

• Multithreading

– Allows for a high degree of instruction-level parallelism without

increasing circuit complexity or power consumption

– Instruction stream is divided into several smaller streams, known as

threads, that can be executed in parallel

Definitions of Threads

and Processes Thread in multithreaded
processors may or may not be

the same as the concept of
software threads in a

multiprogrammed operating
system

Thread is concerned with
scheduling and execution,

whereas a process is
concerned with both

scheduling/execution and
resource and resource

ownership

Process:

•An instance of program running on
computer

•Two key characteristics:

•Resource ownership

•Scheduling/execution

Process switch

•Operation that switches the processor
from one process to another by saving all
the process control data, registers, and
other information for the first and
replacing them with the process
information for the second

Thread:

•Dispatchable unit of work within a
process

• Includes processor context (which
includes the program counter and
stack pointer) and data area for stack

•Executes sequentially and is
interruptible so that the processor can
turn to another thread

Thread switch

•The act of switching processor control
between threads within the same
process

•Typically less costly than process
switch

Implicit and Explicit Multithreading

• All commercial processors and most

experimental ones use explicit multithreading

– Concurrently execute instructions from different

explicit threads

– Interleave instructions from different threads on

shared pipelines or parallel execution on parallel

pipelines

• Implicit multithreading is concurrent execution

of multiple threads extracted from single

sequential program

– Implicit threads defined statically by compiler or

dynamically by hardware

Approaches to Explicit Multithreading

• Interleaved

– Fine-grained

– Processor deals with two or
more thread contexts at a time

– Switching thread at each clock
cycle

– If thread is blocked it is skipped

• Simultaneous (SMT)

– Instructions are simultaneously
issued from multiple threads to
execution units of superscalar
processor

• Blocked

– Coarse-grained

– Thread executed until event
causes delay

– Effective on in-order
processor

– Avoids pipeline stall

• Chip multiprocessing

– Processor is replicated on a
single chip

– Each processor handles
separate threads

– Advantage is that the
available logic area on a
chip is used effectively

Approaches to Executing Multiple Threads

A

A

A

A

A

A

A

A

A

th
re

a
d

 s
w

it
ch

es

A

B

C

D

A

B

B C D

th
re

a
d
 s

w
it

ch
es

A

D

B

D

A

B

D

A

A

B

C

D

A

B

B C D

th
re

a
d

 s
w

it
ch

es

A

D

B

D

A

B

D

A

A N

N

NN

NN

NNN

N

N

B

C

D

A

B

B C D

th
re

a
d

 s
w

it
ch

es

A

NB

A

B

N N N

A NN

B

B

C

B C D A

A

D

A

A

D

D

D

A AA

D

D

B

C

A

B

B

B

B

A

A

A

B C

A D

A C

B

A

A A BD D

A

A

D

B C D A

B

B

B

BA

A

A

A

A

A A

D

D D

D

C

C

C

C

C C

B C D

th
re

a
d
 s

w
it

ch
es

A

B

A

A

B

issue bandwidth

latency

cycle

cy
cl

es

(a) single-threaded

scalar

(g) VLIW (h) interleaved

multithreading

VLIW

(i) blocked

multithreading

VLIW

(j) simultaneous

multithreading

(SMT)

(k) chip multiprocessor

(multicore)

Figure 20.10 Approaches to Executing Multiple Threads

(b) interleaved

multithreading

scalar

(c) blocked

multithreading

scalar

(d) superscalar

(e) interleaved

multithreading

superscalar

(f) blocked

multithreading

superscalar

issu
e sl

ot

A

A

B

B

C

B C D

A

th
re

a
d

 s
w

it
ch

es

A

A

A

B

B

B C D

A

A

A

A

A

A A

A A A A

A

A

N

A

A

N

N

A

A

N

N

N

A

AA NN

N N N

AD AA

B DB DDD

B

B B

B

D

D

D

D

Clusters

• Alternative to SMP as an approach to providing high performance and high

availability

• Particularly attractive for server applications

• Defined as:

– A group of interconnected whole computers working together as a unified computing

resource that can create the illusion of being one machine

– (The term whole computer means a system that can run on its own, apart from the

cluster)

• Each computer in a cluster is called a node

• Benefits:

– Absolute scalability

– Incremental scalability

– High availability

– Superior price/performance

Cluster Configurations

P P

High-speed message link

High-speed message link

M I /O I /O

P P

I /OI /O M

(a) Standby server with no shared disk

P P

RAID

M I /O I /O

P P

I /OI /O M

(b) Shared disk

Figure 20.11 Cluster Configurations

I /O I /O

Clustering Method Description Benefits Limitations

Passive Standby A secondary server takes

over in case of primary

server failure.

Easy to implement. High cost because the

secondary server is

unavailable for other

processing tasks.

Active Secondary: The secondary server is

also used for processing

tasks.

Reduced cost because

secondary servers can

be used for processing.

Increased complexity.

Separate Servers Separate servers have

their own disks. Data

is continuously copied

from primary to secondary

server.

High availability. High network and server

overhead due to copying

operations.

Servers Connected to

Disks

Servers are cabled to

the same disks, but each

server owns its disks. If

one server fails, its disks

are taken over by the

other server.

Reduced network and

server overhead due to

elimination of copying

operations.

Usually requires disk

mirroring or RAID

technology to

compensate

for risk of disk failure.

Servers Share Disks Multiple servers simul-

taneously share access

to disks.

Low network and server

overhead. Reduced risk

of downtime caused by

disk failure.

Requires lock manager

software. Usually used

with disk mirroring or

RAID technology.

Clustering Methods: Benefits and Limitations

Nonuniform Memory Access (NUMA)

• Alternative to SMP and clustering

• Uniform memory access (UMA)
– All processors have access to all parts of main memory using loads and

stores

– Access time to all regions of memory is the same

– Access time to memory for different processors is the same

• Nonuniform memory access (NUMA)
– All processors have access to all parts of main memory using loads and

stores

– Access time of processor differs depending on which region of main memory
is being accessed

– Different processors access different regions of memory at different speeds

• Cache-coherent NUMA (CC-NUMA)
– A NUMA system in which cache coherence is maintained among the caches of the

various processors

Motivation

SMP has practical limit to
number of processors that
can be used

• Bus traffic limits to between 16
and 64 processors

In clusters each node has its
own private main memory

• Applications do not see a large
global memory

• Coherency is maintained by
software rather than hardware

NUMA retains SMP flavor
while giving large scale

multiprocessing

Objective with NUMA is to
maintain a transparent

system wide memory while
permitting multiple

multiprocessor nodes, each
with its own bus or internal

interconnect system

CC-NUMA Organization

L1 Cache

Processor

1-1

Main

Memory 1

Processor

1-m

Figure 20.12 CC-NUMA Organization

L1 Cache

L2 Cache L2 Cache Directory

I /O

I /O

L1 Cache

Processor

N-1

Main

Memory N

Processor

N-m

L1 Cache

L2 Cache L2 Cache

Directory

L1 Cache

Processor

2-1

Main

Memory 2

Processor

2-m

L1 Cache

L2 Cache L2 Cache Directory

I /O

Interconnect

Network

NUMA Pros and Cons

• Main advantage of a CC-

NUMA system is that it can

deliver effective performance

at higher levels of parallelism

than SMP without requiring

major software changes

• Bus traffic on any individual

node is limited to a demand

that the bus can handle

• If many of the memory

accesses are to remote

nodes, performance begins to

break down

• Does not transparently look

like an SMP

• Software changes will be

required to move an

operating system and

applications from an SMP to

a CC-NUMA system

• Concern with availability

