
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(11th Week)

Outline

4. The central processing unit

—Processor Structure and Function

—Reduced Instruction Set Computers (RISCs)

—Instruction-Level Parallelism and Superscalar
Processors

—Control Unit Operation and Microprogrammed
Control

+

4.4 Control Unit Operation and

Microprogrammed Control

4.4 Outline

• Micro-operations

• Control of the Processor

• Hardwired Implementation

• Microprogrammed Control

Micro-Operations

• The functional, or atomic, operations of a processor

• Series of steps, each of which involves the processor
registers

• Micro refers to the fact that each step is very simple and
accomplishes very little

• The execution of a program consists of the sequential
execution of instructions

– Each instruction is executed during an instruction cycle
made up of shorter subcycles (fetch, indirect, execute,
interrupt)

– The execution of each subcycle involves one or more
shorter operations (micro-operations)

Figure: Constituent Elements of a Program

Execution

Program Execution

Instruction Cycle Instruction CycleInstruction Cycle

Indirect Execute InterruptFetch

µOP µOP µOP

Figure 19.1 Constituent Elements of a Program Execution

µOPµOP

The Fetch Cycle

• Occurs at the beginning of each instruction cycle and causes
an instruction to be fetched from memory

• Four registers are involved:

– Memory Address Register (MAR)

▪ Connected to address bus

▪ Specifies address for read or write operation

– Memory Buffer Register (MBR)

▪ Connected to data bus

▪ Holds data to write or last data read

– Program Counter (PC)

▪ Holds address of next instruction to be fetched

– Instruction Register (IR)

▪ Holds last instruction fetched

Figure: Sequence of Events, Fetch Cycle

tMAR MAR 0000000001100100

MBR MBR

PC 0000000001100100 PC 0000000001100100

IR IR

AC AC

 (a) Beginning (before t1) (b) After first step

MAR 0000000001100100 MAR 0000000001100100

MBR 0001000000100000 MBR 0001000000100000

PC 0000000001100101 PC 0000000001100101

IR IR 0001000000100000

AC AC

 (c) After second step (d) After third Step

Figure 19.2 Sequence of Events, Fetch Cycle

Indirect Cycle

• Once an instruction is fetched, the next step is to fetch

source operands

• Assuming a one-address instruction format, with direct

and indirect addressing allowed:

– If the instruction specifies an indirect address, then an

indirect cycle must precede the execute cycle

– The address field of the instruction is transferred to the MAR

– This is then used to fetch the address of the operand

– Finally, the address field of the IR is updated from the MBR,

so that it now contains a direct rather than an indirect

address

– The IR is now in the same state as if indirect addressing had

not been used, and it is ready for the execute cycle

Interrupt Cycle

• At the completion of the execute cycle, a test is made to determine
whether any enabled interrupts have occurred, and if so, the interrupt
cycle occurs

• The nature of this cycle varies greatly from one machine to another

• In a simple sequence of events:

– In the first step the contents of the PC are transferred to the MBR so that they can
be saved for return from the interrupt

– Then the MAR is loaded with the address at which the contents of the PC are to
be saved, and the PC is loaded with the address of the start of the interrupt-
processing routine

▪ These two actions may each be a single micro-operation

▪ Because most processors provide multiple types and/or levels of interrupts, it may take
one or more additional micro-operations to obtain the Save_Address and the
Routine_Address before they can be transferred to the MAR and PC respectively

– Once this is done, the final step is to store the MBR, which contains the old value
of the PC, into memory

– The processor is now ready to begin the next instruction cycle

Execute Cycle

• Because of the variety of opcodes, there are a number of different

sequences of micro-operations that can occur

• Instruction decoding

– The control unit examines the opcode and generates a sequence of

micro-operations based on the value of the opcode

• A simplified add instruction:

– ADD R1, X (which adds the contents of the location X to register R1)

▪ In the first step the address portion of the IR is loaded into the MAR

▪ Then the referenced memory location is read

▪ Finally the contents of R1 and MBR are added by the ALU

▪ Additional micro-operations may be required to extract the register reference

from the IR and perhaps to stage the ALU inputs or outputs in some

intermediate registers

Figure: Flowchart for Instruction Cycle

ICC = 00

ICC = 00ICC = 11

ICC = 10

ICC = 10 ICC = 01

ICC?

Setup

interrupt
Opcode

Read

address

Fetch

intstruction

Indirect

addressing?

Interrupt

for enabled

interrupt?

11 (interrupt) 00 (fetch)

Figure 19.3 Flowchart for Instruction Cycle

10 (execute) 01 indirect

Execute

instruction

Yes No

No Yes

Control Unit

Functional Requirements

• By reducing the operation of the processor to its most fundamental

level we are able to define exactly what it is that the control unit must

cause to happen

• Three step process to lead to a characterization of the control unit:

– Define basic elements of processor

– Describe micro-operations processor performs

– Determine the functions that the control unit must perform to cause the

micro-operations to be performed

• The control unit performs two basic tasks:

– Sequencing

– Execution

Figure: Block Diagram of the Control Unit

Control

Unit

Figure 19.4 Block Diagram of the Control Unit

Instruction register

Flags

Clock

Control signals

within CPU

Control signals

from control bus

Control signals

to control bus

C
o

n
tr

o
l

b
u

s

Figure: Data Paths and Control Signals

M

B

R

M

A

R

PC

AC

Clock

IR

Control

unit

Control

signals

Flags

Figure 19.5 Data Paths and Control Signals

Control

signalsALU

C3

C2

C4

C10

C5

C8 C1

C0

C12

C13

C7

C6

C9

C11

Micro-operations Active Control Signals

Fetch:

t1: MAR ← (PC) C2

t2: MBR ← Memory

PC ← (PC) + 1
C5, CR

t3: IR ← (MBR) C4

Indirect:

t1: MAR ← (IR(Address)) C8

t2: MBR ← Memory C5, CR

t3: IR(Address) ← (MBR(Address)) C4

Interrupt:

t1: MBR ← (PC) C1

t2 : MAR ← Save-address

PC ← Routine-address

t3: Memory ← (MBR) C12, CW

CR = Read control signal to system bus.

CW = Write control signal to system bus.

Table: Micro-operations and Control

Signals

Figure: CPU with Internal Bus

Control

unit

Figure 19.6 CPU with Internal Bus

Address

lines

Data

lines

ALU

IR

PC

MAR

MBR

AC

Y

Z

In
te

rn
a

l
C

P
U

 b
u

s

Figure: Intel 8085 CPU Block Diagram

8-bit internal data bus

Interrupt control Serial I/O

control

INTR

ClkOut

Power

supply
+5V

GND

X1

X2

HLDA Reset outALE S0 S1

Ready

INTA

Hold Reset in

RST 6.5 TRAP

RST 5.5 RST 7.5 SID SOD

(8)

Accumulator

(8)

temp. reg.
(8)

flags

(8)
instruction

register

instruction
decoder

and
machine

cycle
encoding

ALU

(8)

B reg.

(8)

C reg.

(8)

D reg.

(8)

E reg.

(8)

H reg.

(8)

L reg.

(16)

stack pointer

(16)

program counter

(8)

address buffer

(8)

address buffer

AD7 – AD0

address/data bus

A15 – A8

address bus

incrementer/ (16)

decrementer

address latch

register

array

RD WR IO/M

Clk

Gen Control Status

Timing and control

Figure 19.7 Intel 8085 CPU Block Diagram

DMA Reset

Address and Data Signals

High Address (A15–A8)

The high-order 8 bits of a 16-bit address.

Address/Data (AD7–AD0)

The lower-order 8 bits of a 16-bit address or 8 bits of data. This multiplexing saves on pins.

Serial Input Data (SID)

A single-bit input to accommodate devices that transmit serially (one bit at a time).

Serial Output Data (SOD)

A single-bit output to accommodate devices that receive serially.

Timing and Control Signals

CLK (OUT)

The system clock. The CLK signal goes to peripheral chips and synchronizes their timing.

X1, X2

These signals come from an external crystal or other device to drive the internal clock generator.

Address Latch Enabled (ALE)

Occurs during the first clock state of a machine cycle and causes peripheral chips to store the address

lines.

This allows the address module (e.g., memory, I/O) to recognize that it is being addressed.

Status (S0, S1)

Control signals used to indicate whether a read or write operation is taking place.

IO/M

Used to enable either I/O or memory modules for read and write operations.

Read Control (RD)

Indicates that the selected memory or I/O module is to be read and that the data bus is available for data

transfer.

Write Control (WR)

Indicates that data on the data bus is to be written into the selected memory or I/O location.

Table:

Intel

8085

External

Signals
(page 1 of 2)

Memory and I/O Initiated Symbols

Hold

Requests the CPU to relinquish control and use of the external system bus. The CPU will complete execution

of the instruction presently in the IR and then enter a hold state, during which no signals are inserted by the

CPU to the control, address, or data buses. During the hold state, the bus may be used for DMA operations.

Hold Acknowledge (HOLDA)

This control unit output signal acknowledges the HOLD signal and indicates that the bus is now available.

READY

Used to synchronize the CPU with slower memory or I/O devices. When an addressed device asserts

READY, the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise, the CPU

enters a wait state until the device is ready.

Interrupt-Related Signals

TRAP

Restart Interrupts (RST 7.5, 6.5, 5.5)

Interrupt Request (INTR)

These five lines are used by an external device to interrupt the CPU. The CPU will not honor the request

if it is in the hold state or if the interrupt is disabled. An interrupt is honored only at the completion of an

instruction. The interrupts are in descending order of priority.

Interrupt Acknowledge

Acknowledges an interrupt.

CPU Initialization

RESET IN

Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.

RESET OUT

Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Voltage and Ground

VCC

+5-volt power supply

VSS

Electrical ground

Table:

Intel

8085

External

Signals
(page 2 of 2)

Figure: Intel 8085 Pin Configuration
40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2417

2318

2219

2120

X1

X2

Reset out

SOD

SID

Trap

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

AD0

AD1

AD2

AD3

AD4

Vcc

HOLD

HLDA

CLK (out)

Reset in

Ready

IO/M

S1

Vpp

RD

WR

S0

A15

A14

A13

A12

AD5 A11

AD6 A10

AD7 A9

Vss

Figure 19.8 Intel 8085 Pin Configuration

A8

Figure: Timing Diagram for Intel 8085 OUT

Instruction

Figure 19.9 Timing Diagram for Intel 8085 OUT Instruction

T1

A15 – A8

M1

OUT Byte

M2 M3

PC out

T2

PC+1 PC

T3

PCH PCH IO PORT

3-MHz

CLK

ALE

T4

X

T1

PC out

T2 T3 T1

WZ out

T2 T3

PC+1 PC byte Z,W A PortINSTR IR

AD7 – AD0 INSTR INSTR INSTR INSTR ACCUMPCH

RD

WR

IO/M

Instruction fetch Memory read Output write

Control Unit Implementation

• A wide variety of techniques have been used for control

unit implementation

• Most of these fall into two categories:

– Hardwired implementation

– The control unit is essentially a state machine circuit

– Its input logic signals are transformed into a set of output logic

signals, which are the control signals

– Microprogrammed implementation

Figure: Control Unit with Decoded Inputs

Instruction register

Decoder

Control

Unit

Figure 19.10 Control Unit with Decoded Inputs

Flags

Timing

generator

Tn

Clock

T2

T1

I0 I1 Ik

C0 C1 Cm

Microprogrammed Control

• The term microprogrammed was first coined by M.V. Wilkes in the early

1950’s

• Wilkes proposed an approach to control unit design that was organized and

systematic and avoided the complexities of a hardwired implementation

• The idea intrigued many researchers but appeared unworkable because it

would require a fast, relatively inexpensive control memory

• In April of 1964 IBM’s System/360 was announced and all but the largest

models were microprogrammed

• Microprogramming became a popular technique for implementing the control

unit of CISC processors

• In recent years, microprogramming has become less used but remains a

tool available to computer designers

Figure: Typical Microinstruction Formats

 Microinstruction address

 Jump condition

 —Unconditional

 —Zero

 —Overflow

 —Indirect bit

System bus control signals

Internal CPU control signals

Microinstruction address

Jump condition

Function codes

(a) Horizontal microinstruction

(b) Vertical microinstruction

Figure 19.12 Typical Microinstruction Formats

Figure: Organization of Control Memory

Jump to indirect or execute

Fetch

cycle

routine

Indirect

cycle

routine

Interrupt

cycle

routine

AND routine

ADD routine

IOF routine

Figure 19.13 Organization of Control Memory

Execute cycle beginning

Jump to execute

Jump to fetch

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to opcode routine

Figure: Control Unit Microarchitecture

Sequencing

Logic

Read

Control Address Register

Control Buffer Register

Figure 19.14 Control Unit Microarchitecture

Control

Memory

Figure: Functioning of Microprogrammed

Control Unit

Sequencing

Logic

Control

Unit Decoder

Decoder

Control Signals

to System Bus

Control Signals

Within CPU

ALU

Flags

Clock

Read

Next Address Control

Control Address Register

Instruction Register

Control Buffer Register

Figure 19.15 Functioning of Microprogrammed Control Unit

Control

Memory

Figure: Wilkes’s Microprogrammed Control

Unit

Register II

Register I

Address

decoder

Control signals

Figure 19.16 Wilkes's Microprogrammed Control Unit

Control

signals

Clock

from

instruction

register

Conditional

signal

Notations: A, B, C, . . . stand for the various registers in the arithmetical and control register units. C to D indicates

that the switching circuits connect the output of register C to the input register D; (D + A) to C indicates that the

output register of A is connected to the one input of the adding unit (the output of D is permanently connected to

the other input), and the output of the adder to register C. A numerical symbol n in quotes (e.g., “n”) stands for the

source whose output is the number n in units of the least significant digit.

Arithmetical

Unit

Control

Register Unit

Conditional

Flip-Flop

Next

Microinstruction

Set Use 0 1

0 F to G and E 1

1 (G to “1”) to F 2

2 Store to G 3

3 G to E 4

4 E to decoder –

A 5 C to D 16

S 6 C to D 17

H 7 Store to B 0

V 8 Store to A 27

T 9 C to Store 25

U 10 C to Store 0

R 11 B to D E to G 19

L 12 C to D E to G 22

G 13 E to G (1)C5 18

I 14 Input to Store 0

O 15 Store to Output 0

16 (D + Store) to C 0

17 (D – Store) to C 0

18 1 0 1

19 D to B (R)* (G – 1) to E 20

20 C to D (1)E5 21

Table:
Microinstructions

for Wilkes Example

(Page 1 of 2)

Arithmetical

Unit

Control

Register Unit

Conditional

Flip-Flop

Next

Microinstruction

Set Use 0 1

21 D to C (R) 1 11 0

22 D to C (L)† (G - 1) to E 23

23 B to D (1)E5 24

24 D to B (L) 1 12 0

25 “0” to B 26

A 26 B to C 0

S 27 “0” to C “18” to E 28

H 28 B to D E to G (1)B1 29

V 29 D to B (R) (G - “1”) to E 30

T 30 C to D (R) (2)E5 1 31 32

U 31 D to C 2 28 33

R 32 (D + A) to C 2 28 33

L 33 B to D (1)B1 34

G 34 D to B (R) 35

I 35 C to D (R) 1 36 37

O 36 D to C 0

37 (D - A) to C 0

* Right shift. The switching circuits in the arithmetic unit are arranged so that the least significant digit of the

register C is placed in the most significant place of register B during right shift micro-operations, and the most

significant digit of register C (sign digit) is repeated (thus making the correction for negative numbers).

† Left shift. The switching circuits are similarly arranged to pass the most significant digit of register B to the

least significant place of register C during left shift micro-operations.

Table:
Microinstructions

for Wilkes Example

(Page 2 of 2)

