
(Advanced) Computer Architechture

Prof. Dr. Hasan H¿seyin BALIK

(10th Week)

Outline

4. The central processing unit

ðProcessor Structure and Function

ðReduced Instruction Set Computers (RISCs)

ðInstruction -Level Parallelism and Superscalar
Processors

ðControl Unit Operation and Microprogrammed
Control

+

4.3 Instruction-Level Parallelism and

Superscalar Processors

4.3 Outline

ÅOverview

ÅDesign Issues

ÅIntel Core Microarchitecture

ÅARM Cortex -A8

ÅARM Cortex -M3

Term first coined in
1987

Refers to a machine that
is designed to improve
the performance of the

execution of scalar
instructions

In most applications the
bulk of the operations

are on scalar quantities

Represents the next
step in the evolution of

high -performance
general -purpose

processors

Essence of the
approach is the ability
to execute instructions

independently and
concurrently in

different pipelines

Concept can be further
exploited by allowing

instructions to be
executed in an order

different from the
program order

Superscalar

Overview

Superscalar Organization Compared to

Ordinary Scalar Organization
Integer register file

Pipelined integer

functional unit

Memory

Floating point

register file

Figur e 18.1 Superscalar Organization Compar ed to Ordinary Scalar Organization

(a) Scalar organization

Pipelined floating-

point functional unit

Integer register file

Pipelined integer

functional units

Memory

Floating point

register file

(b) Superscalar organization

Pipelined floating-

point functional units

Comparison of Superscalar and

SuperpipelineApproaches

I fetch

0 1 2 3 4 5
Time in base cycles

Figur e 18.3 Comparison of Superscalar and Superpipeline Appr oaches

S
u

cc
es

si
v
e

in
st

ru
ct

io
n

s

6 7 8 9

Key:

Decode

Execute

Write

Superpipelined

Superscalar

Simple 4-stage

pipeline

Å An alternative approach to achieving
greater performance is referred to as
superpipelining

Å A term first coined in 1988

Å Superpipelining divides the pipeline
into a greater number of smaller
stages in order to clock it at a higher
frequency

Å There is still only one pipeline, but by
increasing the number of stages ,we
increase its temporal parallelism

Å This use of a very deep, very high -
speed pipeline for instruction
processing is called superpipelining

Å MIPS R4000

Constraints

ÅInstruction level parallelism

ï Refers to the degree to which the instructions of a program can be

executed in parallel

ï A combination of compiler based optimization and hardware techniques

can be used to maximize instruction level parallelism

ÅLimitations:

ï True data dependency

ï Procedural dependency

ï Resource conflicts

ï Output dependency

ï Antidependency

Effect of Dependencies
I fetch

i0

i1

i0

i1

i0

i1/branch

i2

i3

i4

i5

i0

i1

0 1 2 3 4 5
Time in base cycles

Figur e 18.4 Effect of Dependencies

6 7 8 9

Key:

Decode

Execute

Write

No Dependency

Data Dependency

(i1 uses data computee by i0)

Procedural Dependency

Resour ce Conflict

(i0 and i1 use the same

functional unit)

Design Issues

Instruction-Level Parallelism

and Machine Parallelism

ÅInstruction level parallelism

ïInstructions in a sequence are independent

ïExecution can be overlapped

ïGoverned by data and procedural dependency

ÅMachine Parallelism

ïAbility to take advantage of instruction level parallelism

ïGoverned by number of parallel pipelines

ÅThe order in which
instructions are fetched

ÅThe order in which
instructions are executed

ÅThe order in which
instructions update the
contents of register and
memory locations

ÅIn-order issue with in -order
completion

ÅIn-order issue with out -of-
order completion

ÅOut-of-order issue with out -
of-order completion

ÅRefers to the protocol used
to issue instructions

ÅInstruction issue occurs
when instruction moves
from the decode stage of
the pipeline to the first
execute stage of the
pipeline

ÅRefers to the process of
initiating instruction
execution in the processorõs
functional units

Instruction issue
Instruction issue

policy

Three types of
orderings are

important:

Superscalar
instruction issue
policies can be

grouped into the
following

categories:

Instruction Issue Policy

Superscalar Instruction Issue and

Completion Policies

Decode Execute Wr ite Cycle

I1 I2 1

I3 I4 I1 I2 2

I3 I4 I1 3

 I4 I3 I1 I2 4

I5 I6 I4 5

 I6 I5 I3 I4 6

 I6 7

 I5 I6 8

(a) In-or der issue and in-or der completion

Decode Execute Wr ite Cycle

I1 I2 1

I3 I4 I1 I2 2

 I4 I1 I3 I2 3

I5 I6 I4 I1 I3 4

 I6 I5 I4 5

 I6 I5 6

 I6 7

(b) In-or der issue and out -of -or der completion

Decode Window Execute Wr ite Cycle

I1 I2 1

I3 I4 I1,I2 I1 I2 2

I5 I6 I3,I4 I1 I3 I2 3

 I4,I5,I6 I6 I4 I1 I3 4

 I5 I5 I4 I6 5

 I5 6

(c) Out-of -or der issue and out -of -or der completion

Figur e 18.5 Superscalar Instruction Issue and Completion Pol icies

Å I1 requires two cycles to execute.

Å I3 and I4 conflict for the same
functional unit.

Å I5 depends on the value produced
by I4.

Å I5 and I6 conflict for a functional
unit.

Register Renaming (1 of 2)

Output and antidependencies occur
because register contents may not
reflect the correct ordering from the
program

May result in a pipeline stall

Registers allocated dynamically

Branch Prediction

ÅAny high-performance pipelined machine must address the

issue of dealing with branches

Å Intel 80486 addressed the problem by fetching both the next

sequential instruction after a branch and speculatively fetching

the branch target instruction

ÅRISC machines:

ï Delayed branch strategy was explored

ï Processor always executes the single instruction that immediately

follows the branch

ï Keeps the pipeline full while the processor fetches a new instruction

stream

ÅSuperscalar machines:

ï Delayed branch strategy has less appeal

ï Have returned to pre-RISC techniques of branch prediction

Conceptual Depiction of Superscalar

Processing

static

pr ogram

instruction fetch

and branch

pr ediction

instruction

dispatch

window of

execution

Figur e 18.8 Conceptual Depiction of Superscalar Processing

instruction

issue

instruction

execution

instruction

reorder and

commit

Superscalar Implementation

Key elements:

ÅInstruction fetch strategies that simultaneously fetch multiple
instruction

ÅLogic for determining true dependencies involving register
values, and mechanisms for communicating these values to
where they are needed during execution

ÅMechanisms for initiating, or issuing, multiple instructions in
parallel

ÅResources for parallel execution of multiple instructions,
including multiple pipelined functional units and memory
hierarchies capable of simultaneously servicing multiple
memory references

ÅMechanisms for committing the process state in correct
order

Intel Core Microarchitecture

(a) Cache Parameters

Cache Level Capacity
Associativity

(ways)

Line Size

(bytes)

Writeback

Update Policy

L1 data 32 kB 8 64 Writeback

L1 instruction 32 kB 8 N/A N/A

L2 (shared)1 2, 4 MB 8 or 16 64 Writeback

L2 (shared)2 3, 6 MB 12 or 24 64 Writeback

L3 (shared)2 8, 12, 16

MB
15 64 Writeback

Notes:

1. Intel Core Microarchitecture

2. Enhanced Intel Core Microarchitecture

(b) Load/Store Performance

Data Locality Load Store

Latency Throughput Latency Throughput

L1 data cache 3 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles

L1 data cache of

the other core in

modified state

14 clock

cycles +

5.5 bus cycles

14 clock

cycles +

5.5 bus cycles

14 clock

cycles +

5.5 bus cycles

N/A

L2 cache 14 3 14 3

Memory 14 clock

cycles + 5.5 bus

cycles + memory

latency

Depends on bus

read protocol

14 clock

cycles + 5.5 bus

cycles + memory

latency

Depends on

bus

read protocol

Table:

Cache/Memory

Parameters

and

Performance

of

Processors

Based on

Intel Core

Microarchitecture

Front End

Consists of
three major
components:

Branch prediction unit (BPU)

Instruction fetch and
predecode unit

Instruction queue and
decode unit

Branch Prediction Unit

ÅHelps the instruction fetch unit fetch the most likely instruction

to be executed by predicting the various branch types:

ïConditional

ï Indirect

ï Direct

ïCall

ïReturn

ÅUses dedicated hardware for each branch type

ÅEnables the processor to begin executing instructions long

before the branch outcome is decided

ÅA branch target buffer (BTB) is maintained that caches

information about recently encountered branch instructions

Instruction Fetch and PredecodeUnit

Comprises:

ÅThe instruction translation lookaside buffer (ITLB)

ÅAn instruction prefetcher

ÅThe instruction cache

ÅThe predecode logic

The predecode unit accepts the sixteen bytes from the instruction
cache or prefetch buffers and carries out the following tasks:

ÅDetermine the length of the instructions

ÅDecode all prefixes associated with instructions

ÅMark various properties of instruction for the decoders

Predecode unit can write up to six instructions per cycle into the
instruction queue

ÅIf a fetch contains more than six instructions, the predecoder continues to decode up to
six instructions per cycle until all instruction in the fetch are written to the instruction
queue

ÅSubsequent fetches can only enter predecoding after the current fetch completes

Instruction Queue and Decode Unit

ÅFetched instructions are placed in an instruction queue

ï From there the decode unit scans the bytes to determine

instruction boundaries

ï The decoder translates each machine instruction from one to four

micro-ops

Each of which is a 118-bit RISC instruction

ÅA few instructions require more than four micro-ops so they

are transferred to microcode ROM, which contains the series

of micro-ops (five or more) associated with a complex

machine instruction

Å The resulting micro-op sequence is delivered to the

rename/allocator module

Out-of-Order Execution Logic

ÅThis part of the processor reorders micro-ops to allow them to

execute as quickly as their input operands are ready

ÅAllocate stage

ïAllocates resources required for execution

ïPerforms the following functions:

If a needed resource is unavailable for one of the three micro-ops arriving

at the allocator during a clock cycle, the allocator stalls the pipeline

Allocates a reorder buffer (ROB) entry which tracks the completion status

of one of the 126 micro-ops that could be in process at any time

Allocates one of the 128 integer or floating-point register entries for the

result data value of the micro-op, and possibly a load or store buffer used

to track one of the 48 loads or 24 stores in the machine pipeline

Allocates an entry in one of the two micro-op queues in front of the

instruction schedulers

