
(Advanced) Computer Architechture

Prof. Dr. Hasan Hüseyin BALIK

(10th Week)

Outline

4. The central processing unit

—Processor Structure and Function

—Reduced Instruction Set Computers (RISCs)

—Instruction-Level Parallelism and Superscalar
Processors

—Control Unit Operation and Microprogrammed
Control

+

4.3 Instruction-Level Parallelism and

Superscalar Processors

4.3 Outline

• Overview

• Design Issues

• Intel Core Microarchitecture

• ARM Cortex-A8

• ARM Cortex-M3

Term first coined in
1987

Refers to a machine that
is designed to improve
the performance of the

execution of scalar
instructions

In most applications the
bulk of the operations

are on scalar quantities

Represents the next
step in the evolution of

high-performance
general-purpose

processors

Essence of the
approach is the ability
to execute instructions

independently and
concurrently in

different pipelines

Concept can be further
exploited by allowing

instructions to be
executed in an order

different from the
program order

Superscalar

Overview

Superscalar Organization Compared to

Ordinary Scalar Organization
Integer register file

Pipelined integer

functional unit

Memory

Floating point

register file

Figure 18.1 Superscalar Organization Compared to Ordinary Scalar Organization

(a) Scalar organization

Pipelined floating-

point functional unit

Integer register file

Pipelined integer

functional units

Memory

Floating point

register file

(b) Superscalar organization

Pipelined floating-

point functional units

Comparison of Superscalar and

Superpipeline Approaches

Ifetch

0 1 2 3 4 5

Time in base cycles

Figure 18.3 Comparison of Superscalar and Superpipeline Approaches

S
u

cc
es

si
v
e

in
st

ru
ct

io
n

s

6 7 8 9

Key:

Decode

Execute

Write

Superpipelined

Superscalar

Simple 4-stage

pipeline

• An alternative approach to achieving
greater performance is referred to as
superpipelining

• A term first coined in 1988

• Superpipelining divides the pipeline
into a greater number of smaller
stages in order to clock it at a higher
frequency

• There is still only one pipeline, but by
increasing the number of stages,we
increase its temporal parallelism

• This use of a very deep, very high-
speed pipeline for instruction
processing is called superpipelining

• MIPS R4000

Constraints

• Instruction level parallelism

– Refers to the degree to which the instructions of a program can be

executed in parallel

– A combination of compiler based optimization and hardware techniques

can be used to maximize instruction level parallelism

• Limitations:

– True data dependency

– Procedural dependency

– Resource conflicts

– Output dependency

– Antidependency

Effect of Dependencies
Ifetch

i0

i1

i0

i1

i0

i1/branch

i2

i3

i4

i5

i0

i1

0 1 2 3 4 5

Time in base cycles

Figure 18.4 Effect of Dependencies

6 7 8 9

Key:

Decode

Execute

Write

No Dependency

Data Dependency

(i1 uses data computee by i0)

Procedural Dependency

Resource Conflict

(i0 and i1 use the same

functional unit)

Design Issues

Instruction-Level Parallelism

and Machine Parallelism

• Instruction level parallelism

– Instructions in a sequence are independent

– Execution can be overlapped

– Governed by data and procedural dependency

• Machine Parallelism

– Ability to take advantage of instruction level parallelism

– Governed by number of parallel pipelines

•The order in which
instructions are fetched

•The order in which
instructions are executed

•The order in which
instructions update the
contents of register and
memory locations

• In-order issue with in-order
completion

• In-order issue with out-of-
order completion

•Out-of-order issue with out-
of-order completion

•Refers to the protocol used
to issue instructions

• Instruction issue occurs
when instruction moves
from the decode stage of
the pipeline to the first
execute stage of the
pipeline

•Refers to the process of
initiating instruction
execution in the processor’s
functional units

Instruction issue
Instruction issue

policy

Three types of
orderings are

important:

Superscalar
instruction issue
policies can be

grouped into the
following

categories:

Instruction Issue Policy

Superscalar Instruction Issue and

Completion Policies

Decode Execute Write Cycle

I1 I2 1

I3 I4 I1 I2 2

I3 I4 I1 3

 I4 I3 I1 I2 4

I5 I6 I4 5

 I6 I5 I3 I4 6

 I6 7

 I5 I6 8

(a) In-order issue and in-order completion

Decode Execute Write Cycle

I1 I2 1

I3 I4 I1 I2 2

 I4 I1 I3 I2 3

I5 I6 I4 I1 I3 4

 I6 I5 I4 5

 I6 I5 6

 I6 7

(b) In-order issue and out-of-order completion

Decode Window Execute Write Cycle

I1 I2 1

I3 I4 I1,I2 I1 I2 2

I5 I6 I3,I4 I1 I3 I2 3

 I4,I5,I6 I6 I4 I1 I3 4

 I5 I5 I4 I6 5

 I5 6

(c) Out-of-order issue and out-of-order completion

Figure 18.5 Superscalar Instruction Issue and Completion Policies

• I1 requires two cycles to execute.

• I3 and I4 conflict for the same
functional unit.

• I5 depends on the value produced
by I4.

• I5 and I6 conflict for a functional
unit.

Register Renaming (1 of 2)

Output and antidependencies occur
because register contents may not
reflect the correct ordering from the
program

May result in a pipeline stall

Registers allocated dynamically

Branch Prediction

• Any high-performance pipelined machine must address the

issue of dealing with branches

• Intel 80486 addressed the problem by fetching both the next

sequential instruction after a branch and speculatively fetching

the branch target instruction

• RISC machines:

– Delayed branch strategy was explored

– Processor always executes the single instruction that immediately

follows the branch

– Keeps the pipeline full while the processor fetches a new instruction

stream

• Superscalar machines:

– Delayed branch strategy has less appeal

– Have returned to pre-RISC techniques of branch prediction

Conceptual Depiction of Superscalar

Processing

static

program

instruction fetch

and branch

prediction

instruction

dispatch

window of

execution

Figure 18.8 Conceptual Depiction of Superscalar Processing

instruction

issue

instruction

execution

instruction

reorder and

commit

Superscalar Implementation

Key elements:

• Instruction fetch strategies that simultaneously fetch multiple
instruction

• Logic for determining true dependencies involving register
values, and mechanisms for communicating these values to
where they are needed during execution

• Mechanisms for initiating, or issuing, multiple instructions in
parallel

• Resources for parallel execution of multiple instructions,
including multiple pipelined functional units and memory
hierarchies capable of simultaneously servicing multiple
memory references

• Mechanisms for committing the process state in correct
order

Intel Core Microarchitecture

(a) Cache Parameters

Cache Level Capacity
Associativity

(ways)

Line Size

(bytes)

Writeback

Update Policy

L1 data 32 kB 8 64 Writeback

L1 instruction 32 kB 8 N/A N/A

L2 (shared)1 2, 4 MB 8 or 16 64 Writeback

L2 (shared)2 3, 6 MB 12 or 24 64 Writeback

L3 (shared)2 8, 12, 16

MB
15 64 Writeback

Notes:

1. Intel Core Microarchitecture

2. Enhanced Intel Core Microarchitecture

(b) Load/Store Performance

Data Locality Load Store

Latency Throughput Latency Throughput

L1 data cache 3 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles

L1 data cache of

the other core in

modified state

14 clock

cycles +

5.5 bus cycles

14 clock

cycles +

5.5 bus cycles

14 clock

cycles +

5.5 bus cycles

N/A

L2 cache 14 3 14 3

Memory 14 clock

cycles + 5.5 bus

cycles + memory

latency

Depends on bus

read protocol

14 clock

cycles + 5.5 bus

cycles + memory

latency

Depends on

bus

read protocol

Table:

Cache/Memory

Parameters

and

Performance

of

Processors

Based on

Intel Core

Microarchitecture

Front End

Consists of
three major
components:

Branch prediction unit (BPU)

Instruction fetch and
predecode unit

Instruction queue and
decode unit

Branch Prediction Unit

• Helps the instruction fetch unit fetch the most likely instruction

to be executed by predicting the various branch types:

– Conditional

– Indirect

– Direct

– Call

– Return

• Uses dedicated hardware for each branch type

• Enables the processor to begin executing instructions long

before the branch outcome is decided

• A branch target buffer (BTB) is maintained that caches

information about recently encountered branch instructions

Instruction Fetch and Predecode Unit

Comprises:

• The instruction translation lookaside buffer (ITLB)

• An instruction prefetcher

• The instruction cache

• The predecode logic

The predecode unit accepts the sixteen bytes from the instruction
cache or prefetch buffers and carries out the following tasks:

• Determine the length of the instructions

• Decode all prefixes associated with instructions

• Mark various properties of instruction for the decoders

Predecode unit can write up to six instructions per cycle into the
instruction queue

• If a fetch contains more than six instructions, the predecoder continues to decode up to
six instructions per cycle until all instruction in the fetch are written to the instruction
queue

• Subsequent fetches can only enter predecoding after the current fetch completes

Instruction Queue and Decode Unit

• Fetched instructions are placed in an instruction queue

– From there the decode unit scans the bytes to determine

instruction boundaries

– The decoder translates each machine instruction from one to four

micro-ops

▪ Each of which is a 118-bit RISC instruction

• A few instructions require more than four micro-ops so they

are transferred to microcode ROM, which contains the series

of micro-ops (five or more) associated with a complex

machine instruction

• The resulting micro-op sequence is delivered to the

rename/allocator module

Out-of-Order Execution Logic

• This part of the processor reorders micro-ops to allow them to

execute as quickly as their input operands are ready

• Allocate stage

– Allocates resources required for execution

– Performs the following functions:

▪ If a needed resource is unavailable for one of the three micro-ops arriving

at the allocator during a clock cycle, the allocator stalls the pipeline

▪ Allocates a reorder buffer (ROB) entry which tracks the completion status

of one of the 126 micro-ops that could be in process at any time

▪ Allocates one of the 128 integer or floating-point register entries for the

result data value of the micro-op, and possibly a load or store buffer used

to track one of the 48 loads or 24 stores in the machine pipeline

▪ Allocates an entry in one of the two micro-op queues in front of the

instruction schedulers

Reorder Buffer (ROB)

Circular buffer that can
hold up to 126 micro-ops
and also contains the 128
hardware registers

Each buffer entry consists
of the following fields:

• State

• Indicates whether this micro-op is
scheduled for execution, has been
dispatched for execution, or has
completed execution and is ready
for retirement

• Memory address

• The address of the Pentium
instruction that generated the
micro-op

• Micro-op

• The actual operation

• Alias register

• If the micro-op references one of
the 16 architectural registers, this
entry redirects that reference to
one of the 128 hardware registers

Register Renaming (2 of 2)

• Register renaming
– The rename stage remaps

references to the 16

architectural registers into a

set of 128 physical registers

• Micro-op scheduling and

dispatching
– Schedulers are responsible

for retrieving micro-ops

from the micro-op queues

and dispatching these for

execution

• Micro-op queuing

– After resource allocation and

register renaming, micro-ops

are placed in one of two

micro-op queues, where they

are held until there is room in

the schedulers

• Integer and floating-point

execution units
– The execution units retrieve

values from the register files

as well as from the L1 data

cache

Architectural Block Diagram of ARM

Cortex-A8

ARM Cortex-A8 Integer Pipeline

Instruction Fetch Unit

• Predicts instruction stream

• Fetches instructions from the L1

instruction cache

• Places the fetched instructions

into a buffer for consumption by

the decode pipeline

• Also includes the L1 instruction

cache

• Speculative (there is no guarantee

that they are executed)

• Branch or exceptional instruction

in the code stream can cause a

pipeline flush

• Can fetch up to four instructions

per cycle

• F0

– Address generation unit (AGU)

generates a new virtual address

– Not counted as part of the 13-stage

pipeline

• F1

– The calculated address is used to fetch

instructions from the L1 instruction

cache

– In parallel, the fetch address is used to

access branch prediction arrays

• F3

– Instruction data are placed in the

instruction queue

– If an instruction results in branch

prediction, new target address is sent

to the address generation unit

Instruction Decode Unit

• Decodes and sequences all ARM and Thumb instructions

• Dual pipeline structure, pipe0 and pipe1
– Two instructions can progress at a time

– Pipe0 contains the older instruction in program order

– If instruction in pipe0 cannot issue, instruction in pipe1 will not issue

• All issued instructions progress in order

• Results written back to register file at end of execution
pipeline
– Prevents WAR hazards

– Keeps track of WAW hazards and recovery from flush conditions
straightforward

• Main concern of decode pipeline is prevention of RAW
hazards

Instruction Processing Stages

D0

•Thumb
instructions
decompressed
and preliminary
decode is
performed

D1

•Instruction
decode is
completed

D2

•Writes
instructions into
and read
instructions from
pending/replay
queue

D3

•Contains the
instruction
scheduling logic

•Scoreboard
predicts register
availability using
static scheduling

•Hazard checking
is done

D4

•Final decode for
control signals for
integer execute
load/store units

Integer Execute Unit

• Consists of:

– Two symmetric arithmetic logic unit (ALU)

pipelines

– An address generator for load and store

instructions

– The multiply pipeline

• The instruction execute unit:

– Executes all integer ALU and multiply

operations, including flag generation

– Generates the virtual addresses for loads

and stores and the base write-back value,

when required

– Supplies formatted data for stores and

forwards data and flags

– Processes branches and other changes

of instruction stream and evaluates

instruction condition codes

• For ALU instructions, either pipeline can

be used, consisting of the following

stages:

– E0

▪ Access register file

▪ Up to six registers for two instructions

– E1

▪ Barrel shifter if needed.

– E2

▪ ALU function

– E3

▪ If needed, completes saturation

arithmetic

– E4

▪ Change in control flow prioritized and

processed

– E5

▪ Results written back to register file

Load/Store Pipeline

• Runs parallel to integer pipeline

• E1

– Memory address generated from base and index register

• E2

– Address applied to cache arrays

• E3

– Load -- data are returned and formatted

– Store -- data are formatted and ready to be written to cache

• E4

– Updates L2 cache, if required

• E5

– Results are written back into the register file

ARM Cortex-A8 NEON and Floating-Point

Pipeline

ARM Cortex-M3 Block Diagram

ARM Cortex-M3 Pipeline

