(Advanced) Computer Architechture

Pr of . Dr . Hasan H
(10" Week)

Outline

4. The central processing unit
0 Processor Structure and Function
0 Reduced Instruction Set Computers (RISCs)

0 Instruction -Level Parallelism and Superscalar
Processors

o0 Control Unit Operation and Microprogrammed
Control

.
4.3 Instruction-Level Parallelism and
Superscalar Processors

4.3 Outline

A Overview

A Design Issues

A Intel Core Microarchitecture
A ARM Cortex -A8

A ARM Cortex -M3

Superscalar
Overview

program order

Superscalar Organization Compared to
Ordinary Scalar Organization

. : Floating point
Integer regider file redster file
A A T AA
\4 * \ 4
Memory
|| [[
Pipelined integer Pipelined floating-
functional unit point functional unit
() Scalar organization
. : Floating point
Integer regiger file redster file

A A A A A A
Y Y Y Y

I I o I - -
Pipelined integer Pipelined floating-
functional units point functional units

(b) Superscalar organization

Comparison of Superscalar and
Superpipeline Approaches

A An alternative approach to achieving
greater performance is referred to as
superpipelining o

A A term first coined in 1988 : | Sivetaag |

A Superpipelining divides the pipeline L j
Into a greater number of smaller

stages in order to clock it at a higher
frequency

A There is still only one pipeline, but by
Increasing the number of stages ,we
Increase its temporal parallelism

A This use of avery deep, very high -
speed pipeline for instruction
processing is called superpipelining : P

A MIPS R4000 | e S S NG

instructions

ccessive

1 1 1 1
E Sup:erpipen:ned E
1 1

Su

1 1 1
| Superscalar
1 1

Constraints

A Instruction level parallelism

I Refers to the degree to which the instructions of a program can be
executed in parallel

I A combination of compiler based optimization and hardware techniques
can be used to maximize instruction level parallelism

A Limitations:
I True data dependency
I Procedural dependency
I Resource conflicts
I Output dependency
I Antidependency

Effect of Dependencies « ceu

Ifetch |Decode d Write
i i i i .
i i i i
. K 1 I I I i
i0 S]] ']]
. [1No Dependency [
i1 1 1 1 1 1
I I I I I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
oo i i i i i
i0 J i i i i i
) I Data Dependency !
i1 1 (i1 usesdata computee by i0)
I i i i i i i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
. RRRR i i i i i
0 ! ! Prooedu'ral Depet‘wdency !
i i i
i1/branch i q | | 1
I I
i2 1 1 1 i
1 1 1 1
i3 I I R0 ANAX I I
I I i
i4 1 1 1 i
i i i i
i5 ! ! ! |
i i i i
I 1 1 1 1 1 1 1 1
I 1 1 I I I I I I
I I I 1 1 I 1 i I
[[[[[[
i0 | I I I I I
) : Resour ce Conflict :
i1 1(i0andilusethesame
I ; A I
\ 4 . . | | X lfuncfclonal unit) X X
0 1 2 3 4 5 6 7 8 9

Timein base cydes

Design Issues

Instruction-Level Parallelism
and Machine Parallelism

A Instruction level parallelism
I Instructions in a sequence are independent
I Execution can be overlapped
I Governed by data and procedural dependency

A Machine Parallelism
I Abllity to take advantage of instruction level parallelism
I Governed by number of parallel pipelines

Instruction Issue Policy

KﬁRefers to the process of
initiating instruction
execution in t
functional units

Instruction issue

instruction issue
policies can be
e grouped into the
following
categories:

Ain-order issue with in -order
completion

Ain-order issue with out -of-
order completion

AOut-of-order issue with out -
of-order completion

-

ARefers to the protocol used \
to issue instructions

Ainstruction issue occurs
when instruction moves
from the decode stage of
the pipeline to the first

\ execute stage of the

N\ pipeline

Three types of
orderings are /
important:)

AThe order in which
instructions are fetched

AThe order in which
instructions are executed

AThe order in which
instructions update the
contents of register and
memory locations

/

A

Superscalar Instruction Issue and

Completion Policies

|1 requires two cycles to execute.

I3 and 14 conflict for the same
functional unit.

|5 depends on the value produced
by 14.

|5 and 16 conflict for a functional
unit.

Decode Execute Write Cycle
11 12 1
13 14 11 12 2
13 14 11 3
14 13 1112 4
15 16 14 5
16 15 13| 14 6
16 7
15| 16 8
(a) In-or der isueand in-or der compl etion
Decode Execute Write Cycle
11 12 1
13 14 11 12 2
14 11 13 12 3
15 16 14 1113 4
16 15 14 5
16 15 6
16 7
(b) In-or der issue and out -of -or der compl etion
Decode Window Execute Write
11 12
13 14 11,12 11 12
15 16 13,14 11 13 12
14,15,16 16 14 11|13
15 15 14 | 16
15

(c) Out-of-or der issue and out -of -or der compl etion

Cycle

o0 WN

Register Renaming (1 of 2)

Output and antidependencies occur
because register contents may not
reflect the correct ordering from the
program

May. result in a pipeline stall

Registers allocated dynamically

Branch Prediction

A Any high-performance pipelined machine must address the
Issue of dealing with branches

A Intel 80486 addressed the problem by fetching both the next
sequential instruction after a branch and speculatively fetching
the branch target instruction

A RISC machines:
I Delayed branch strategy was explored

I Processor always executes the single instruction that immediately
follows the branch

I Keeps the pipeline full while the processor fetches a new instruction
stream

A Superscalar machines:
I Delayed branch strategy has less appeal
I Have returned to pre-RISC techniques of branch prediction

Conceptual Depiction of Superscalar
Processing

ingruction ingruction
insruction fetch dispatch Issue
| and branch : I ingruction ingtruction
satic pr ediction | / ! exeaution reorder and
pr ogram ! I commit

/ |
i

_ . :
i

> — |

e | \ !
i

- I

I
i

[\ l
i

I
i

Superscalar Implementation

A Instruction fetch strategies that simultaneously fetch multiple
Instruction

A Logic for determining true dependencies involving register
values, and mechanisms for communicating these values to
where they are needed during execution

A Mechanisms for initiating, or issuing, multiple instructions in
parallel

A Resources for parallel execution of multiple instructions,
Including multiple pipelined functional units and memory
hierarchies capable of simultaneously servicing multiple
memory references

A Mechanisms for committing the process state in correct
order

Intel Core Microarchitecture

L1 Instruction Cache <
Shared
* Bus
Instruction Fetch and PreDecode {— Ints:‘fiatce
* Branch
Instruction Queue Prediction
* Unit
A
Microcode
ROM [Decode
L > v
i Shared L2 Cache
Up to 10.7 Gbps
Rename/Alloc FSB
v 7
Retirement Unit
(Re-Order Buffer)

v

Scheduler/Reservation Station

lPort 0

lPort 1

iPort 2

iPort 3

iPort4

Integer ALU Integer ALU Integer ALU Load Unit Store Unit
Branch FPAdd FPMul
MMX/SSE MMX/SSE MMX/SSE
FPmove FPmove FPmove Memory Ordering Buffer

LI 1

!

!

L1 Data Cache and DTLB <

(a) Cache Parameters

Cache Level | Capacit Associativity Line Size Writeback
pacity (ways) (bytes) Update Policy
L1 data 32 kB 8 64 Writeback
L1 instruction | 32 kB 8 N/A N/A
L2 (shared)?! 2,4 MB 8 or 16 64 Writeback
L2 (shared)? 3,6 MB 12 or 24 64 Writeback
L3 (shared)? :\3/'; 2 88 15 64 Writeback
Notes:
1. Intel Core Microarchitecture
2. Enhanced Intel Core Microarchitecture
(b) Load/Store Performance
Data Locality Load Store
Latency Throughput Latency Throughput
L1 data cache 3 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles
L1 data cache of | 14 clock 14 clock 14 clock N/A
the other core in cycles + cycles + cycles +
modified state 5.5 bus cycles 5.5 bus cycles 5.5 bus cycles
L2 cache 14 3 14 3
Memory 14 clock Depends on bus 14 clock Depends on
cycles + 5.5 bus read protocol cycles + 5.5 bus bus
cycles + memory cycles + memory read protocol
latency latency

Table:

Cache/Memory
Parameters
and
Performance
of
Processors
Based on
Intel Core
Microarchitecture

Front End

Branch prediction unit (BPU)
Consists of

three major
components: Instruction fetch and
predecode unit

Instruction queue and
decode unit

Branch Prediction Unit

A Helps the instruction fetch unit fetch the most likely instruction
to be executed by predicting the various branch types:

I Conditional
I Indirect

I Direct

I Call

I Return

A Uses dedicated hardware for each branch type

A Enables the processor to begin executing instructions long
before the branch outcome is decided

A A branch target buffer (BTB) is maintained that caches
Information about recently encountered branch instructions

Instruction Fetch and PredecodeUnit

A The instruction translation lookaside buffer (ITLB)
A An instruction prefetcher

A The instruction cache

A The predecode logic

A Determine the length of the instructions
A Decode all prefixes associated with instructions
A Mark various properties of instruction for the decoders

A If a fetch contains more than six instructions, the predecoder continues to decode up to
six instructions per cycle until all instruction in the fetch are written to the instruction
queue

A Subsequent fetches can only enter predecoding after the current fetch completes

Instruction Queue and Decode Unit

A Fetched instructions are placed in an instruction queue

I From there the decode unit scans the bytes to determine

Instruction boundaries
I The decoder translates each machine instruction from one to four
micro-ops

Each of which is a 118-bhit RISC instruction

A A few instructions require more than four micro-ops so they
are transferred to microcode ROM, which contains the series

of micro-ops (five or more) associated with a complex
machine instruction

A The resulting micro-op sequence is delivered to the
rename/allocator module

Out-of-Order Execution Logic

A This part of the processor reorders micro-ops to allow them to
execute as quickly as their input operands are ready

A Allocate stage
I Allocates resources required for execution

I Performs the following functions:

If a needed resource is unavailable for one of the three micro-ops arriving
at the allocator during a clock cycle, the allocator stalls the pipeline

Allocates a reorder buffer (ROB) entry which tracks the completion status
of one of the 126 micro-ops that could be in process at any time

Allocates one of the 128 integer or floating-point register entries for the
result data value of the micro-op, and possibly a load or store buffer used
to track one of the 48 loads or 24 stores in the machine pipeline

Allocates an entry in one of the two micro-op queues in front of the
instruction schedulers

