
BLM5102 
Computer Systems and 

Network Security

Prof. Dr. Hasan Hüseyin BALIK

(10th Week)



Outline

• 3. Cryptographic Algorithms

—3.1. Cryptographic Tools

—3.2. Symmetric Encryption and Message 
Confidentiality

—3.3. Public-Key Cryptography and Message 
Authentication



3.3 Public-Key Cryptography and 

Message Authentication



3.2. Outline
• Secure Hash Functions

• HMAC

• Authenticated Encryption

• The RSA (Ron Rivest, Adi Shamir ve Leonard
Adleman) Public-Key Encryption Algorithm

• Diffie-Hellman and Other Asymmetric 
Algorithms





Secure Hash Algorithm
(SHA)

• SHA was originally developed by NIST
• Published as FIPS 180 in 1993
• Was revised in 1995 as SHA-1

• Produces 160-bit hash values 

• NIST issued revised FIPS 180-2 in 2002
• Adds 3 additional versions of SHA 
• SHA-256, SHA-384, SHA-512
• With 256/384/512-bit hash values
• Same basic structure as SHA-1 but greater security

• The most recent version is FIPS 180-4 which 
added two variants of SHA-512 with 224-bit and 
256-bit hash sizes



 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512 
SHA-

512/224 
SHA-

512/256 

Message 
size 

< 264 < 264 < 264 < 2128 < 2128 < 2128 < 2128 

Word 
size 

32 32 32 64 64 64 64 

Block 
size 

512 512 512 1024 1024 1024 1024 

Message 
digest 
size 

160 224 256 384 512 224 256 

Number 
of steps 

80 64 64 80 80 80 80 

Security 80 112 128 192 256 112 128 

 

Notes: 1.  All sizes are measured in bits.
2.  Security refers to the fact that a birthday attack on a message digest of 

size n produces a collision with a work factor of approximately 2n/2.

Comparison of SHA Parameters



N ¥ 1024 bits

Figure 21.2  Message Digest Generation Using SHA-512

M1 M2 MN

F
IV =

H0

H1
F

Message

H2

1024

HN =

hash

code

1024

F

1024

1024  bits 1024  bits 1024  bits

L bits

L

128 bits

512

100..0

+ +

+

+

= word-by-word addition mod 2 64



SHA-3
• SHA-2 shares same structure and mathematical operations as 

its predecessors and causes concern

• Due to time required to replace SHA-2 should it become 
vulnerable, NIST announced in 2007 a competition to produce 
SHA-3

Requirements:

• Must support hash value lengths of 224, 256,384, and 512 bits

• Algorithm must process small blocks at a time instead of 
requiring the entire message to be buffered in memory 
before processing it

• NIST selected a winning submission and formally published 
SHA-3 as FIPS 202 (SHA-3 Standard: Permutation- Based Hash 
and Extendable-Output Functions, August 2015).

• SHA-3 is a complement to SHA-2 rather than a replacement. 



HMAC
• Interest in developing a MAC derived from a 

cryptographic hash code
• Cryptographic hash functions generally execute faster

• Library code is widely available

• SHA-1 was not deigned for use as a MAC because it does not rely 
on a secret key

• Issued as RFC2014

• Has been chosen as the mandatory-to-implement 
MAC for IP security
• Used in other Internet protocols such as Transport Layer Security 

(TLS) and Secure Electronic Transaction (SET)



HMAC Design Objectives

To use, without modifications, 
available hash functions

To allow for easy replaceability
of the embedded hash function 

in case faster or more secure 
hash functions are found or 

required

To preserve the original 
performance of the hash 

function without incurring a 
significant degradation

To use and handle keys in a 
simple way

To have a well-understood 
cryptographic analysis of the 
strength of the authentication 

mechanism based on 
reasonable assumptions on the 

embedded hash function



Security of HMAC
• Security depends on the cryptographic strength of the 

underlying hash function

• The appeal of HMAC is that its designers have been able 
to prove an exact relationship between the strength of the 
embedded hash function and the strength of HMAC

• For a given level of effort on messages generated by a 
legitimate user and seen by the attacker, the probability of 
successful attack on HMAC is equivalent to one of the 
following attacks on the embedded hash function:

• The attacker is able to compute an output of the compression function 
even with an IV that is random, secret, and unknown to the attacker

• The attacker finds collisions in the hash function even when the IV is 
random and secret





 
algorithm OCB-Encrypt

K
(N, M) 

Partition M into M[1]…M[m] 

L ¬ L(0) ¬ E
K

(0n) 

R ¬ E
K

(N Å L) 

for i ¬ 1 to m do L(i) ¬ 2 × L(i – 1) 

L(–1) = L × 2–1 

Z[1] ¬ L Å R 

for i ¬ 2 to m do Z[i] ¬ Z[i – 1] Å L(ntz(i)) 

for i ¬ 1 to m – 1 do 

 C[i] ¬ E
K

(M[i] Å Z[i]) Å Z[i] 

X[m] ¬ len(M[m]) Å L(–1) Å Z[m] 

Y[m] ¬ E
K

(X[m]) 

C[m] ¬ M[m] Å (first len(M[m]) bits of Y[m]) 

Checksum ¬ 

 M[1] Å … Å M[m – 1] Å C[m]0* Å Y[m] 

Tag ¬ E
K

(Checksum Å Z[m]) [first t bits] 

algorithm OCB-Decrypt
K

(N, M) 

Partition M into M[1]…M[m] 

L ¬ L(0) ¬ E
K

(0n) 

R ¬ E
K

(N Å L) 

for i ¬ 1 to m do L(i) ¬ 2 × L(i – 1) 

L(–1) = L × 2–1 

Z[1] ¬ L Å R 

for i ¬ 2 to m do Z[i] ¬ Z[i – 1] Å L(ntz(i)) 

for i ¬ 1 to m – 1 do 

 M[i] ¬ D
K

(C[i] Å Z[i]) Å Z[i] 

X[m] ¬ len(M[m]) Å L(–1) Å Z[m] 

Y[m] ¬ E
K

(X[m]) 

M[m] ¬ (first len(C[m]) bits of Y[m]) Å C[m] 

Checksum ¬ 

 M[1] Å … Å M[m – 1] Å C[m]0* Å Y[m] 

Tag' ¬ E
K

(Checksum Å Z[m]) [first t bits] 

 

 

Figure 21.6  OCB Algorithms  

 



RSA Public-Key Encryption

• By Rivest, Shamir & Adleman of MIT in 1977 

• Best known and widely used public-key algorithm 

• Uses exponentiation of integers modulo a prime

• Encrypt: C = Me mod n

• Decrypt: M = Cd mod n = (Me)d mod n = M

• Both sender and receiver know values of n and e

• Only receiver knows value of d

• Public-key encryption algorithm with public key            
PU = {e, n} and private key PR = {d, n}



 

 
Key Generation 

 

 Select p, q p and q both prime, p ¹ q 

  

 Calculate n = p ´ q 
  

 Calculate f(n) = (p – 1)(q – 1) 

 

 Select integer e gcd(f(n), e) = 1;  1 < e < f(n) 

 

 Calculate d de mod f(n) = 1  

 

 Public key KU = {e, n} 
 

 Private key KR = {d, n} 

 

 

 
Encryption 

 

 Plaintext: M < n 

 

 Ciphertext: C = Me (mod n) 
 

 

 
Decryption 

 

 Ciphertext: C 

 

 Plaintext: M = Cd (mod n) 

 

 

 
 

Figure 21.7  The RSA Algorithm 
 



Encryption

plaintext

88

plaintext

88

ciphertext

11
88  mod 187 = 11

PU = 7, 187

Decryption

Figure 21.8  Example of RSA Algorithm

7
11    mod 187 = 88

PR = 23, 187

23



Security of RSA

• Involves trying all possible private keys

Brute force

• There are several approaches, all equivalent in effort to factoring the 
product of two primes

Mathematical attacks 

• These depend on the running time of the decryption algorithm

Timing attacks

• This type of attack exploits properties of the RSA algorithm

Chosen ciphertext attacks



Timing Attacks
• Paul Kocher, a cryptographic consultant, demonstrated 

that a snooper can determine a private key by keeping 
track of how long a computer takes to decipher 
messages

• Timing attacks are applicable not just to RSA, but also to 
other public-key cryptography systems

• This attack is alarming for two reasons:

• It comes from a completely unexpected direction
• It is a ciphertext-only attack



Timing Attack 
Countermeasures

Constant 
exponentiation time

• Ensure that all 
exponentiations take 
the same amount of 
time before returning a 
result

• This is a simple fix but 
does degrade 
performance

Random delay

• Better performance 
could be achieved by 
adding a random delay 
to the exponentiation 
algorithm to confuse 
the timing attack

• If defenders do not add 
enough noise, attackers 
could still succeed by 
collecting additional 
measurements to 
compensate for the 
random delays

Blinding 

• Multiply the ciphertext 
by a random number 
before performing 
exponentiation

• This process prevents 
the attacker from 
knowing what 
ciphertext bits are 
being processed inside 
the computer and 
therefore prevents the 
bit-by-bit analysis 
essential to the timing 
attack



Diffie-Hellman Key 
Exchange

• First published public-key algorithm 

• By Diffie and Hellman in 1976 along with the 
exposition of public key concepts

• Used in a number of commercial products

• Practical method to exchange a secret key 
securely that can then be used for subsequent 
encryption of messages

• Security relies on difficulty of computing 
discrete logarithms 



Diffie-Hellman Example

Have

•Prime number q = 353 

•Primitive root  = 3

A and B each compute their public keys

•A computes YA = 397 mod 353 = 40

•B computes YB = 3233 mod 353 = 248

Then exchange and compute secret key:

•For A: K = (YB)
XA mod 353 = 24897 mod 353 = 160

•For B: K = (YA)XB mod 353 = 40233 mod 353 = 160

Attacker must solve:

•3a mod 353 = 40 which is hard

•Desired answer is 97, then compute key as B does



Man-in-the-Middle Attack

• Attack is:
1. Darth generates private keys XD1 and XD2, and 

their  public keys YD1 and YD2

2. Alice transmits YA to Bob

3. Darth intercepts YA and transmits YD1 to Bob. 
Darth also calculates K2

4. Bob receives YD1 and calculates  K1

5. Bob transmits XA to Alice

6. Darth intercepts XA and transmits YD2 to Alice. 
Darth calculates K1

7. Alice receives YD2 and calculates  K2

• All subsequent communications compromised



Other Public-Key Algorithms

Digital Signature 

Standard (DSS)
Elliptic-Curve 

Cryptography (ECC)

• FIPS PUB 186 

• Makes use of SHA-1 and the 
Digital Signature Algorithm 
(DSA)

• Originally proposed in 1991, 
revised in 1993 due to security 
concerns, and another minor 
revision in 1996

• Cannot be used for encryption or 
key exchange

• Uses an algorithm that is 
designed to provide only the 
digital signature function

• Equal security for smaller bit size 
than RSA

• Seen in standards such as IEEE 
P1363

• Confidence level in ECC is not 
yet as high as that in RSA

• Based on a mathematical 
construct known as                    
the elliptic                                 
curve


	Slide 1: BLM5102  Computer Systems and Network Security
	Slide 2: Outline
	Slide 3
	Slide 4: 3.2. Outline
	Slide 5
	Slide 6: Secure Hash Algorithm (SHA)
	Slide 7
	Slide 8
	Slide 9: SHA-3
	Slide 10: HMAC
	Slide 11: HMAC Design Objectives
	Slide 12: Security of HMAC
	Slide 13
	Slide 14
	Slide 15: RSA Public-Key Encryption
	Slide 16
	Slide 17
	Slide 18: Security of RSA
	Slide 19: Timing Attacks
	Slide 20: Timing Attack Countermeasures
	Slide 21: Diffie-Hellman Key Exchange
	Slide 22: Diffie-Hellman Example
	Slide 23: Man-in-the-Middle Attack
	Slide 24: Other Public-Key Algorithms

