ADVANCED COMPUTER NETWORKS

Prof. Dr. Hasan Hüseyin BALIK

(3rd Week)

Outline

- 2. Data Communications
 - -2.1. Error Detection and Correction
 - -2.2. Data Link Control Protocols
 - -2.3. Multiplexing

2.1 Error Detection and Correction

2.1.Outline

- Types of Errors
- Error Detection
- Parity Check
- The Internet Checksum
- Cyclic Redundancy Check (CRC)
- Forward Error Correction

Types of Errors

An error occurs when a bit is altered between transmission and reception

- Binary 1 is transmitted and binary 0 is received
- Binary 0 is transmitted and binary 1 is received

Single bit errors

Isolated error that alters one bit but does not affect nearby bits

Can occur in the presence of white noise

Burst errors

Contiguous sequence of *B* bits in which the first and last bits and any number of intermediate bits are received in error

Can be caused by impulse noise or by fading in a mobile wireless environment

Effects of burst errors are greater at higher data rates

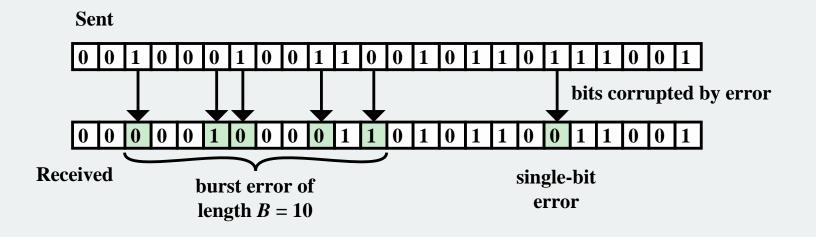


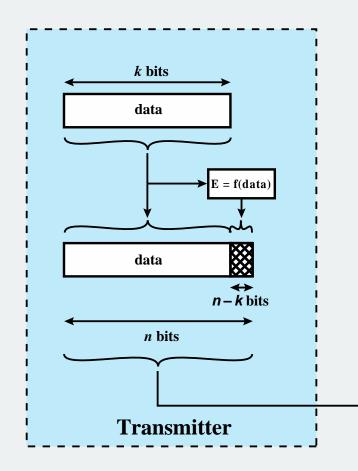
Figure 6.1 Burst and Single-Bit Errors

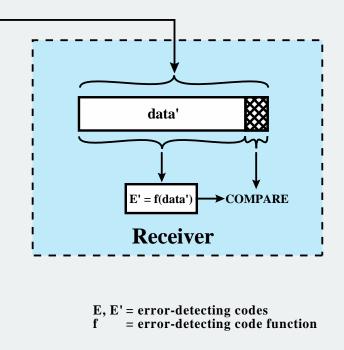
Error Detection

- Regardless of design you will have errors, resulting in the change of one or more bits in a transmitted frame
- Frames

P_b

Ρ


 P_2

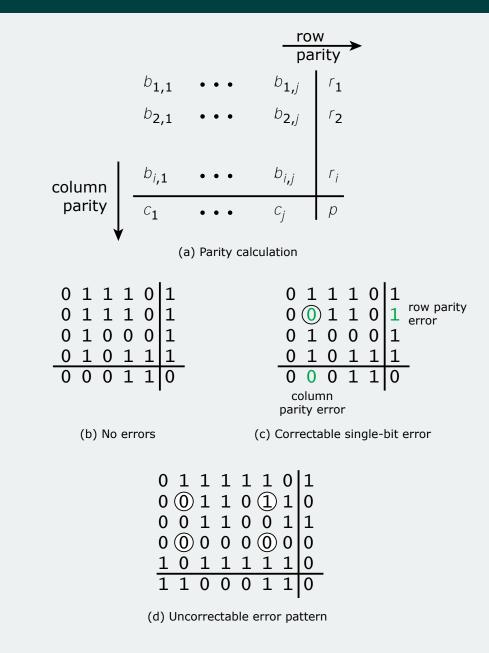

 P_3

• Data transmitted as one or more contiguous sequences of bits

 Probability that a bit is received in error; also known as the bit error rate (BER)

- Probability that a frame arrives with no bit errors
- Probability that, with an error-detecting algorithm in use, a frame arrives with one or more undetected errors
- Probability that, with an error-detecting algorithm in use, a frame arrives with one or more detected bit errors but no undetected bit errors
- The probability that a frame arrives with no bit errors decreases when the probability of a single bit error increases
- > The probability that a frame arrives with no bit errors decreases with increasing frame length
 - The longer the frame, the more bits it has and the higher the probability that one of these is in error

Figure 6.2 Error Detection Process


Parity Check

The simplest error detecting scheme is to append a parity bit to the end of a block of data

> Even parity Even number of 1s • Used for synchronous transmission

Odd number of 1s • Used for asynchronous transmission

If any even number of bits are inverted due to error, an undetected error occurs

The Internet Checksum

- Error detecting code used in many Internet standard protocols, including IP, TCP, and UDP
- > Ones-complement operation
 - Replace 0 digits with 1 digits and 1 digits with 0 digits
- Ones-complement addition
 - The two numbers are treated as unsigned binary integers and added
 - If there is a carry out of the leftmost bit, add 1 to the sum (end-around carry)
- To verify
 - the ones-complement sum is computed over the same set of octets, including the checksum field. If the result is all 1 bits (- 0 in ones-complement arithmetic), the check succeeds.

	0001
Partial sum	F203
	F204
	F204
Partial sum	F4F5
	1E6F9
	E6F9
Carry	1
	E6FA
	E6FA
Partial sum	F6F7
	1DDF1
	DDF1
Carry	1
	DDF2
	220D
Ones complement of the result	

	0001				
Partial sum	F203				
	F204				
	F204				
Partial sum	F4F5				
	1E6F9				
	E6F9				
Carry	1				
	E6FA				
	E6FA				
Partial sum	F6F7				
	1DDF1				
	DDF1				
Carry	1				
	DDF2				
	DDF2				
Partial sum	220D				
	FFFF				

(a) Checksum calculation by sender

(b) Checksum verification by receiver

Figure 6.4 Example of Internet Checksum

Cyclic Redundancy Check (CRC)

One of the most common and powerful errordetecting codes

Given a k bit block of bits, the transmitter generates an (n – k) bit frame check sequence (FCS) which is exactly divisible by some predetermined number

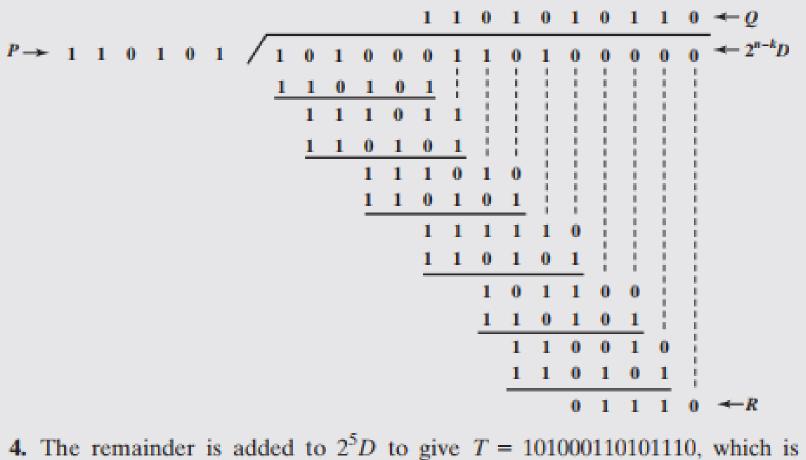
Receiver divides the incoming frame by that number

• If there is no remainder, assume there is no error

CRC Process

- Modulo 2 arithmetic
 - Uses binary addition with no carries
 - Just the exclusiveOR (XOR) operation
- Polynomials
 - Express all values as polynomials in a dummy variable X, with binary coefficients
 - Coefficients correspond to the bits
 in the binary number

- Digital logic
 - Dividing circuit consisting of XOR gates and a shift register
 - Shift register is a string of 1-bit storage devices
 - Each device has an output line, which indicates the value currently stored, and an input line
 - At discrete time instants, known as clock times, the value in the storage device is replaced by the value indicated by its input line
 - The entire register is clocked simultaneously, causing a 1-bit shift along the entire register

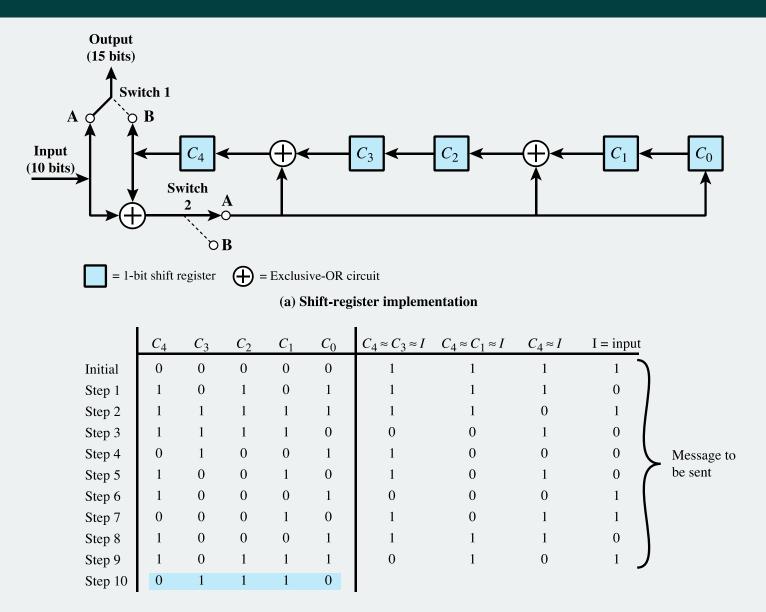

1. Given

Message D = 1010001101 (10 bits)Pattern P = 110101 (6 bits)FCS R = to be calculated (5 bits)

Thus, n = 15, k = 10, and (n - k) = 5.

The message is multiplied by 2⁵, yielding 101000110100000.

3. This product is divided by P:


 The remainder is added to 2^oD to give T = 101000110101110, which i transmitted.

 If there are no errors, the receiver receives T intact. The received frame is divided by P:

											1	1	0	1	0	1	0	1	1	0 -	-0
$P \rightarrow 1$ 1	0	1	0	1	/	1	0	1	0	0	0	1	1	0	1	0	1	1	1	0 -	- T
						1	1 1 1	0	1	0	1	÷	÷	÷	÷	÷		÷	÷	1	
						_	1	1	1	•	-	1	÷.	÷	÷	÷.	÷.	÷	÷	1	
							1	1	1	v	1	1								-	
							1	1	0	1	0	1		÷				1		-	
									1	1	1	0	1	0	-			÷	÷	1	
									1	-		ĩ		1	- į	÷.	÷.	÷.	÷	÷	
									1		U	1		<u> </u>	i	÷.		÷.	÷.	1	
											1	1	1	1	1	0	1	÷	÷	-	
											1	1	0	1	0	1	1			-	
											_	-							1	-	
													1	0	1	1	1	1		-	
													1	1	0	1	0	1	i	i.	
														1	1	0	1	0	1		
														1	1	0	1	0	1	i	
																				0 ◄	- <i>R</i>

Because there is no remainder, it is assumed that there have been no errors.

Figure 6.5 Example of Polynomial Division

(b) Example with input of 1010001101

Figure 6.6 Circuit with Shift Registers for Dividing by the Polynomial $X^5 + X^4 + X^2 + 1$

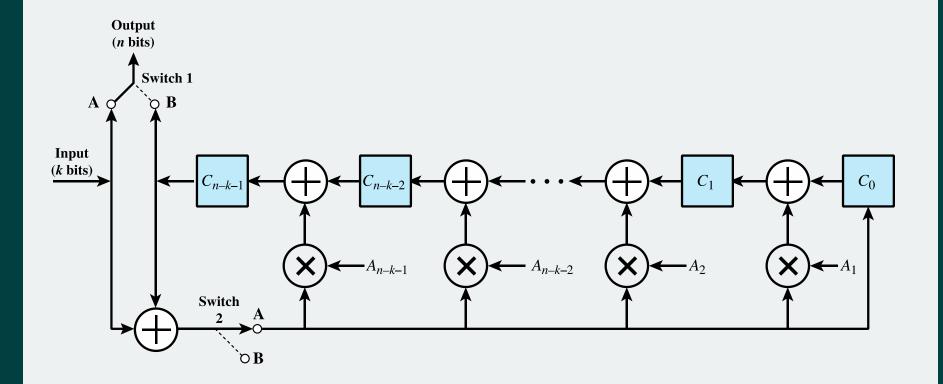
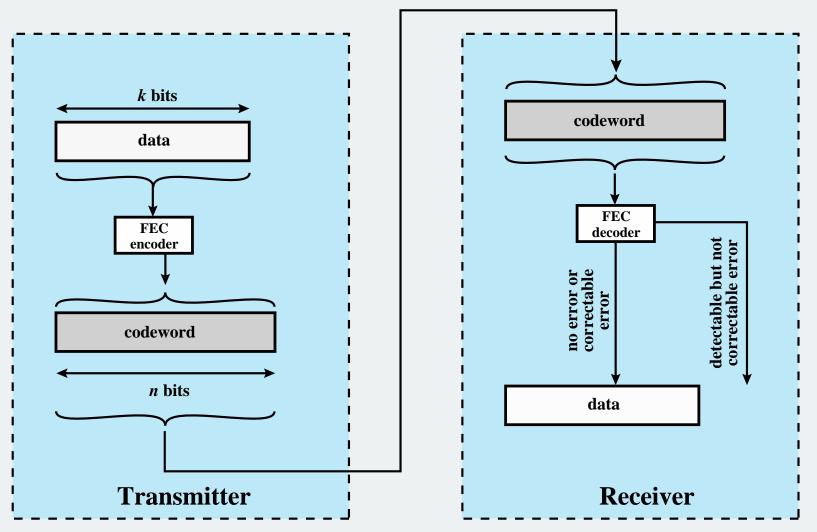


Figure 6.7 General CRC Architecture to Implement Divisor $(1 + A_1X + A_2X^2 + ... + A_{n-k-1}X^{n-k-1} + X^{n-k})$


Forward Error Correction

Correction of detected errors usually requires data blocks to be retransmitted

- Not appropriate for wireless applications:
 - The bit error rate (BER) on a wireless link can be quite high, which would result in a large number of retransmissions
 - Propagation delay is very long compared to the transmission time of a single frame
- Need to correct errors on basis of bits received

Codeword

 On the transmission end each k-bit block of data is mapped into an n-bit block (n > k) using a forward error correction (FEC) encoder

- Detectable, corectable error
- Detectable, not corractable errors
- Undetactable errors

Figure 6.8 Error Correction Process

Block Code Principles

- > Hamming distance
 - d(v₁, v₂) between two n –bit binary sequences v₁ and v₂ is the number of bits in which v₁ and v₂ disagree
- Redundancy of the code
 - The ratio of redundant bits to data bits (*n-k*)/*k*
- Code rate
 - The ratio of data bits to total bits k/n
 - Is a measure of how much additional bandwidth is required to carry data at the same data rate as without the code

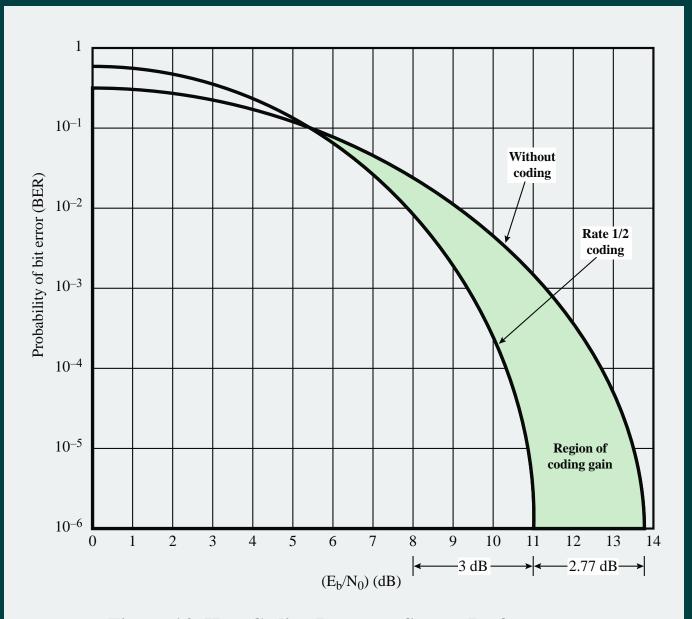


Figure 6.9 How Coding Improves System Performance